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PREFACE 

TN  this  Tract  rigidity  of  proof  and  novelty  of  treatment  have  been 

-^  aimed  at  rather  than  simplicity  of  presentation,  though  this  has 
never  been  lightly  sacrificed.  The  Differential  Calculus  is  concerned 

with  those  continuous  functions  that  possess  differential  coefficients 
and  with  these  differential  coefficients  themselves.  As  a  differential 

coefficient  is  not  necessarily  a  continuous  function,  the  subject  merges 

naturally  into  the  wider  one  of  the  Theory  of  Functions  of  one  or  more 

Real  Variables,  and  cannot,  therefore,  be  completely  mastered  without 

some  knowledge  of  the  Theory  of  Sets  of  Points.  No  more  know- 

ledge of  the  language  or  concepts  of  this  theory  will  however  here  be 

required  than  a  serious  mathematical  student  may  now  be  supposed 

to  have  gained  before  completing  his  Degree  course,  and,  with  this 

exception,  the  present  account  of  the  fundamental  theorems  of 

the  Differential  Calculus  will,  it  is  hoped,  be  found  to  be  complete 

in  itself.  For  the  rest  a  brief  account  is  given  in  Appendix  III 

of  the  definitions  and  results  from  the  Theory  of  Sets  of  Points 

actually  employed  in  the  Tract. 

The  theory  of  those  functions  that  correspond  to  the  differential 

coefficient  at  a  point  at  which  this  latter  does  not  exist,  does  not  fall 

naturally  within  our  scope.  Some  of  the  remarkable  properties  of 

these  interesting  functions,  with  other  generalities,  are,  however,  stated 

without  proof  in  Appendix  I. 



VI  PREFACE 

The  theory  of  Maxima  and  Minima  has  been  barely  alluded  to,  and 

the  complex  variable  has  been  rigorously  excluded.  Apart  from  other 

considerations  the  space  at  our  disposal  has  here  been  decisive.  For 

the  same  reason  it  has  been  impossible  to  give  more  than  a  few  isolated 

examples.  Appendix  II  consists  of  references  to  some  of  the  existing 

literature,  where  such  examples  may  be  found. 

It  is  perhaps  well  to  warn  the  English  reader  in  conclusion  that 

such  initial  difficulties  as  he  may  feel  are  likely  to  be  due,  in  part  at 

least,  to  a  lack  of  familiarity  with  the  modern  formulation  of  the 

concept  of  an  irrational  number. 

W.  H.  Young. 

La  Nonette  de  la  Foret, 

Geneva,  Switzerland. 

November^  1909. 
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I.     PRELIMINARY   NOTIONS. 

1.  Independent  variables.     Interval.     Right  and  left. 
In  the  present  tract  we  shall  deal  with  one  or  more  real  independent 
variables  x,  each  of  which  assumes  all  values  in  some  interval,  which 

may  be  closed  {a-^x^b)  or  completely  open  {a  <x  <b)  or  Jmlf-open, 
The  values  of  x  may  be  supposed  represented  in  any  of  the  usual  ways 
on  a  straight  line,  which  will  be  laid  horizontal  and  so  that,  as  x  in- 

creases, the  representative  point  moves  to  the  right.  This  straight  line 
will  be  imagined  closed  at  each  end  by  a  point,  the  point  +  qo  on  the 

right  and  -  co  on  the  left,  and  when  we  speak  of  the  interval  {a,  b),  the 
left-hand  end-point  may,  unless  the  contrary  is  stated,  be  —  oc ,  and  the 
right-hand  end-point  +  00. 

If  there  are  two  or  more  independent  variables,  these  will  be 
represented  on  rectangular  axes,  and  the  ensemble  of  them  (x,  y),  or 
(i27i,  ̂ 2)  •••)  ̂ n)>  will  be  represented  by  a  point  in  the  plane  or  higher 
space.  The  correlative  of  an  interval  will  then  be  a  rectangle,  or 

w-dimensional  parallelepiped,  and  may  be  closed  or  completely  or  par- 
tially open.  In  what  immediately  follows  x  will,  for  brevity,  be  used 

equally  for  a  single  variable  and  for  the  ensemble  of  several  variables, 
and  the  word  interval  will  be  used  with  the  understanding  that  in 
higher  space  the  proper  interpretation  is  to  be  put  upon  it. 

2.  Function  of  one  or  more  variables.  Finite.  Bounded. 

If  to  each  x  there  is  an  unique  value  /,  this  is  said  to  be  a  function 
of  Xj  and  we  write /(^)  for  it.  It  is  found  convenient  to  include  the 

two  distinct  infinite  numbers  4-  00  and  —  qo  as  among  the  values  which 
the  most  general  kind  of  function  may  assume (*). 

If  f{x)  has  at  each  point  x  a  finite  value,  it  is  said  to  be  a  finite 
function.  If  there  is  some  finite  number  greater  (less)  than  any  value 
of  the  function,  /(^)  is  said  to  be  bounded  above  {below),  and  if  bounded 
both  above  and  below, /(^r)  is  a  bounded  function. 

Ex.  1.  Let/(0)  =  0,  /(^)  =  -,  {x  =^  0).  Then /is  a  finite  function,  unbounded 
both  above  and  below. 
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11.      LIMITS. 

3.  Upper  and  lower  bound.  Upper  and  lower  limi1 
Unique  limit.  The  least  (greatest)  number  which  is  not  less  (greatei 
than  any  value  of  a  function  is  called  its  upper  {lower)  hound.  It  : 
therefore  the  same  thing  to  say  a  function  is  unbounded  above  (belo\^ 

or  that  the  upper  (lower)  bound  is  +  oo  (-00). 

If  we  take  a  sequence  of  intervals*  each  inside  the  preceding, 
Ml,  ̂ 2)   •••)  dm  •••  > 

and  having  one  and  only  one  common  internal  point  a,  the  uppc 
(lower)  bounds  oif{x)  for  values  of  a;  other  than  a  in  these  successiv 
intervals  will  not  increase  (decrease),  so  that  they  form  a  monoton 
descending  (ascending)  series 

The  lower  bound  ̂   of  the  former  and  the  upper  bound  xp  of  th 
latter  series  are  therefore  unaltered  if  we  omit  any  finite  number  of  i1 
constituents,  or  if  we  interpolate  the  upper  (lower)  bound  taken  wit 
respect  to  any  intermediate  interval.  Hence  it  is  easily  perceived  tha 
<j>  and  \p  do  not  depend  on  the  particular  sequence  of  intervals  chosei 
provided  only  the  same  point  a  is  in  each  case  the  sole  and  onl 
common  internal  point.  Thus  <^  and  \j/  depend  only  on  the  point  a  an 
the  function  /,  and  are  called  respectively  the  upper  mid  lower  limii 
off  at  the  point  a.  As  we  vary  a,  cf>  and  if/  become  functions  <^  (■r)  an 

i/'(^),  and  are  called  the  associated  upper  and  lower  limiting  fu7ictions  ̂  

It  may  sometimes  be  convenient  in  considering  the  behaviour  c 
/(;r)  in  the  neighbourhood  of  the  point  a  to  omit  other  values  of  . 
besides  the  value  a,  which  is  always  omitted.  The  values  of  ̂   whic 
are  retained  must  form  a  set  S  with  a  as  limiting  point,  and  shoul 
in  each  case  be  expressly  defined.  We  then  get,  by  a  precisely  simila 
method,  upper  and  lower  limits  at  the  point  a  with  respect  to  the  set  ̂  
Each  such  limit  is  said  to  be  a  limit  of  f{x)  at  the  point  a,  and  ther 
will  always  be  a  plurality  of  limits,  except  when  the  upper  and  lowe 
limits  at  a  coincide,  in  which  case  f{cc)  is  said  to  have  an  uniqu 
limit  at  the  point  a,  and  its  value  is  the  common  value  of  the  uppe 
and  lower  limits.  When  there  is  a  single  independent  variable  ̂ ,  i 
is  important  to  consider  the  case  in  which  the  set  S  consists  of  a] 

*  See  Appendix  III. 
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points  of  an  interval  on  one  side  only  of  the  point  a.  We  thus  get 
upper  and  lower  and  possibly  intermediate  limits  on  the  right  and  on 
the  left  respectively  of  the  point  a,  and,  when  these  coincide,  we 
get  an  unique  limit  on  the  right  or  on  the  left. 

4.  Plurality  of  Limits.  The  concept  of  a  plurality  of  limits 
can  only  be  clearly  grasped  by  reference  to  the  elementary  facts  of  the 

Theory  of  Sets  of  Points.  As  the  function  y=f{x)  is  supposed  to  be 
any  whatever,  the  mode  of  distribution  of  the  set  of  points  Ga  on  the 

^-axis,  which  represents  the  values  of  the  function  at  all  points 
except  a  of  some  interval  d  containing  a  on  the  ;r-axis,  is  any 
whatever.  Certain  of  these  points  may  be  repeated  an  infinite  number 
of  times,  since  the  function  may  assume  the  same  value  over  and  over 
again.  If  this  is  the  case,  we  add  such  points  to  the  first  derived 

set*  of  Ga.  The  set  Ha  so  formed  is  still  a  closed  set,  since  the 
addition  of  points  of  a  set  to  its  first  derived  set  introduces  no  new 
limiting  points.  In  particular  the  set  Ha  includes  the  point  Qa  which 
represents  the  upper  bound  of /(^)  in  the  interval  d  considered. 

If  we  now  let  the  interval  d  shrink  up  to  the  point  a,  as  in  the 
preceding  article,  the  successive  closed  sets  Ha  so  obtained  lie  each 

inside  the  preceding  sets,  and  therefore,  by  Cantor's  Theorem  of  Deduc- 
tion*, determine  a  closed  set  H^  consisting  of  all  their  common  points, 

which  is  easily  seen  to  be  the  same,  however  the  interval  d  shrinks  up 
to  the  point  a,  and  includes  the  unique  limiting  point  Q  of  the  points 
Qd .  This  closed  set  H  of  values  of  y  is  said  to  constitute  the  set  of  limits 
of  the  functimi  f  {ic)  at  the  point  a.  Since  the  set  H  certainly  includes 
the  point  §,  the  set  of  limits  includes  the  upper  (and  similarly  the 
lower)  limit  as  defined  in  the  preceding  article,  and  this  whether  these 

b'^its  are  taken  with  respect  to  the  continuum  or  any  other  set. 
On  the  other  hand,  since  every  set  of  points  contains  at  least  one 

[uence*  having  as  unique  limiting  point  any  required  limiting  point 
the  original  set,  it  follows  that,  if  I  be  any  limit  of  f{x)  oX,  x  =  a, 
re  is  a  sequence  ^i,  x^^-.-Xn,---  having  a  as  unique  limiting  point, 

.^uo-h  that,  passing  along  this  sequence,  f{x)  has  /  as  unique  limit. 

''his  important  property  proves  at  the  same  time,  in  conjunction  with 
preceding  paragraph,  that  the  limits  (>)  as  defined  in  the  present 
cle  are  the  same  as  in  the  preceding  article. 
We  use  the  notation Llt/(^) 

x  =  a 

*  See  Appendix  III. 
1—2 
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to  denote  the  set  of  all  the  limits  oi  f{x)  at  the  point  a,  while,  if  it  is 
known  that  there  is  an  unique  limit,  we  write  Lt  f{x)  for  that  limits x  =  a 

Thus  the  equation  ^h 
y=Uf{x)  ^ 

x  =  a  ^^ 

must  be  understood  to  mean  both  that  f{x)  has  an  unique  limit  at , 

x  =  a,  and  also  that  that  limit  is  y.  ^H 

5.  Double  and  repeated  limits.  Any  repeated  limit 
is  a  double  limit.  If  there  are  two  independent  variables  x  and  3/, 
the  limits  at  {a,  b),  obtained  in  the  manner  explained  in  §§  3,  4,  with 

the  two-dimensional  interpretation  given  in  §  1,  are  called  double 
limits  off(x,  y)  at  (a,  b). 

Similarly  if  there  are  n  variables,  the  corresponding  limits  are  call^ 
w-ple  limits  at  the  point. 

If  f{x,  y)  is  a  function  of  two  independent  variables  x  and 
becomes  a  function  of  x  alone  when  we  keep  y  constant  and  has  a  corr^ 
sponding  set  of  simple  limits 

Utf{x,y). 

I 
acorre- 

If  there  is  only  one  such  limit  for  each  value  of  y,  this  limit  defines 

a  function  of  y,  and  has  as  such  a  set  of  limits  for  y  =  b  \  these  are 
called  the  repeated  limits  of  f{x,  y)  first  with  respect  to  x  and  then 
with  respect  to  y,  and  written 

Lit  Uf{x,y). 

Similarly,  if  there  is  an  unique  limit  when 
Lit  Lt  fix,  y) 

is  kept  constant, 

denotes  the  repeated  limits  of  f{x,  y),  first  with  respect  to  y  and  then 
with  respect  to  x. 

Sometimes  it  is  desirable  to  consider  only  such  double  limits  as 
result  from  values  of  f(x,  y)  in  a  neighbourhood  of  the  point  {a,  b) 

other  than  points  on  the  axial  cross  through  (a,  6),  that  is  on  x^a 

and  on  y  -  b.  Such  a  neighbourhood  is  called  a  non-axial  neigh- 
bourhood.    In  particular  we  have  the  following  theorem.  -^ 

Theorem.  Any  repeated  limit  is  a  double  limit,  taken  with  respect 

to  a  non-axial  neighbourhood  of  the  point  considered. 
For  by  the  definition  of  a  repeated  limit,  say  w,  whatever  sequence 

of  values  different  from  a,  say  ̂ 1,  ̂ 2  •••,  •••  ̂ n,  •••  be  taken,  having  a  as 
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unique  limit, /(^w,  y)  has,  for  fixed  y  different  from  h,  an  unique  limit, 
say  V  (y),  when  n  is  indefinitely  increased,  and  the  quantities  v  (y)  have 

s>t  y  =  b  the  repeated  limit  u  in  question  as  one  of  their  limits  ;  that  is 

v(y)=  lA  f{xn,y),   {y^h\ 

u  =  one  of  trhe  Lit  v  (y), 

y-b 
Represent  the  values  of  these  functions  on  a  straight  line,  as  in  §  4, 

/fe,  y)  hy  the  point  Pn,y, 

^^(i/)  by  the  point  Qy, 

u  by  the  point  Q. 

Then,  unless  the  points  Pn.y,  for  fixed  y^  all  coincide  with  the  exception 
of  a  finite  number  of  them,  Qy  is  the  unique  limiting  point  of  the 
points  Pn,2/,  while  in  the  excluded  case,  it  is  the  repeated  point  itself. 
In  either  case,  denoting  as  in  §  4  these  points  Pn,y,  which  as  n  and  y 
Tary,  lie  in  a  neighbourhood  d  of  the  point  a,  by  the  set  Ga-,  each 
point  <^y  is  a  point  of  the  closed  set  H^ ,  consisting  of  the  first  derived 
set  of  Ga  together  with  its  repeated  points,  if  any. 

Again  Q  is  either  a  repeated  point  of  the  set  Ha  or  one  of  its 
limiting  points,  and  therefore  in  any  case  it  is  for  all  neighbourhoods  d 
a  point  of  the  set  Ha,  since  that  set  is  closed.  Thus  §  represents  by 

§4  a  double  limit  of/(.^■,  y)  at  the  point  (a,  6).  Moreover,  since  the 
points  {xn,  y)  all  lie  off  the  axial  cross,  this  double  limit  is  taken  with 

respect  to  a  non-axial  neighbourhood  of  the  point  (a,  h). 
It  is  an  immediate  consequence  that  if  fixy  y)  has  an  unique  double 

limits  and  the  simple  limit 
Ltf(a  +  h,  b  +  k) 
h  =  0 

is  uniqttefor  all  values  of  k  i^i  a  certain  neighbourhood  ofk=0,  then  the 
repeated  limit 

Lt  \Af{a->rh,  b  +  k) 

exists  and  is  equal  to  the  double  limit. 

It  may  evidently  happen  that,  even  when  Llt/(^,  y)  do  not  all  coincide, 

the  upper  and  lower  limits,  and  therefore  all  intermediate  limits,  have  an 
unique  limit,  which  is  the  same  for  each,  as  y  approaches  b.  If  we  agree  to 

call  this  an  unique  repeated  limit,'  it  is  evident  that  the  above  reasoning  holds, 
with  the  small  modification  that  the  values  ̂ i,  ̂ 2?  •••  ̂ re  not  independent  of 
y,  but  form  for  each  value  of  y  a  sequence  with  the  same  property  as  before. 
Thus  such  an  unique  repeated  limit  is  also  a  double  limit. 
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It  need  hardly  be  remarked  that  the  existence  of  an  unique  limit  oif{x, 
for  each  fixed  value  of  y,  does  not,  of  course,  involve  that  of  an  unique  limit 

when  y  varies  with  x,  which  would  be  concomitant  to  the  existence  of  an^ 
unique  double  limit.  ^H 

The  most  general  definition  of  a  repeated  limit,  when  neither  of  the  simple 

limits  involved  is  unique,  and  the  corresponding  theorem,  which  still  holds, 

are  not  required  in  the  present  connexion  (^^). 

III.     CONTINUITY  AND   SEMI-CONTINUITY. 

6.  Upper  and  lower  semi-continuity.  If  the  upper  limit 
at  a  is  :^  the  value  of/ at  that  point,  that  is  if  (§  3) 

f(a))  is  said  to  be  upper  semi-continuous  at  the  point  a.     If  on  tl 
other  hand 

f{a)  ̂   xj/  (a) 

fifc)  is  said  to  be  lower  semi-continuous  at  a.  If  at  every  point  of 
an  interval,  open  or  closed,  /(^)  is  upper  (lower)  semi-continuous  it  is 
said  to  be  an  upper  {lower^  semi-continuous  function.  In  particular 
it  is  easily  proved  that  <^  {x)  is  an  upper  and  \\i  {x)  a  lower  semi^ 
continuous  function  (*l 

Ex.  2.     Let/(^')  =  0,  when  x  is  zero  or  irrational,  and 
1  v 

/(^)  =  -,  when  x  =  -  is  rational,  (0<.^^1), 

p  and  q  being  integers  prime  to  one  another. 

Then  /  {x)  is  an  upper  semi-continuous  function,  and  its  ̂   {x)  =  0,  0  {x) 
By  changing  the  sign  of  /  we  get  a  lower  semi-continuous  function. 

It  follows  immediately  from  the  definitions  that  the  points,  if  any , 

at  which  an  upper  {lower)  semi-continuous  function  assumes  values 
^k  (^  k)  form  a  closed  set. 

Another  important  property  is  the  following : — An  upper  (lower) 
semi-continuous  function  assumes  in  every  closed  interval  its  upper 
iljower)  hound  in  that  interval.  For  let  ̂ i  <  Ats  <  . . .  <  A:„  <  • . .  be  an 
ascending  sequence  of  numbers  having  the  upper  bound  U  of  an 

upper  semi-continuous  function  f{x)  for  upper  bound.  Then  if  G^ 
denote  the  closed  set  of  points  at  which  f{x)^kn,  there  is,  by 

Cantor's  Theorem  of  Deduction,  at  least  one  point  a  common  to 
all  the  successive  sets  Gn-  Hence  kn^f(a)^  U  for  all  integers  n. 

But  U  is  the  upper  bound  of  the  ̂ 's,  therefore  f{a)  =  U. 

A 
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Hence  it  easily  follows  (^)  that  an  upper  ijower)  semi-continuous 
function  which  is  finite  in  (a,  b)  is  bounded  in  some  interval  inside 

(a,  b). 

Theorem.  A  monotone  decreasing  sequence  of  functions  fi  ̂^2  ̂   •  •  • 

which  are  upper  semi-continuous  at  a  point  P  has  for  limit  a  function  f 
which  is  also  upper  semi-continuous  at  P. 

For  at  a  point  where /=  +  oo ,  it  is,  of  course,  upper  semi-continuous, 
we  have  therefore  only  to  prove  the  theorem  at  a  point  where 

f{P)<A, 
A  being  a  finite  quantity. 

Since /(P)  is  the  limit  of/^  (P),  we  can  determine  m  so  that 

fn.{P)<A, 
and,  since /ot  is  upper  semi-continuous,  we  can  find  an  interval  d,  con- 

taining P  as  internal  point,  such  that  throughout  it 

fr,,{x)<A. Since  the  sequence  of  functions  is  monotone  decreasing,  it  follows 
that,  for  all  values  of  n  ̂   m, 

fn{x)<A, 
so  that,  throughout  the  interval  c?. 

Since  A  was  any  quantity  greater  than/(P),  this  shews  that /is 

upper  semi-continuous  at  P,  which  proves  the  theorem. 
In  the  same  way  we  have  the  corresponding  theorem  : — A  monotone 

increasing  sequence  of  functions  f^^f 2^...  which  are  lower  semi- 
continuous  at  P,  has  for  limit  a  function  f  which  is  also  lower 
semi-continuous  at  P. 

7.  Continuity.  If  a  function  /(a?)  is  both  upper  and  lower 

semi-continuous  at  the  point  a,  that  is,  if  it  has  an  unique  limit  at 
a  whose  value  is  the  same  as /(a),  the  function  is  said  to  be  continuous 
at  the  point  a.  If  it  is  continuous  at  every  point  of  an  interval,  open 
or  closed,  it  is  said  to  be  a  continuous  function  in  that  interval. 

We  already  know  therefore  that  a  continuous  function  has  the 

following  properties : — 
The  points,  if  any,  at  which  a  continuous  function  assumes  values 

^  k  and  those  at  which  it  is  "^k,  and  therefore  those  at  which  it  is  =  k, 
aliform  closed  sets. 

A  continuous  function  assumes  its  upper  and  lower  bounds  in  every 
closed  interval. 
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It  has  also  the  following  important  property,  which,  as  will  be  seen 
in  the  sequel,  is  not  confined  to  continuous  functions,  and  is  shared  by 

all  differential  coefficients,  whether  or  no  they  are  continuous : — 
A  continuous  function  assumes  all  values  between  its  upper  and 

lower  hounds. 

In  fact  since  a  continuum  cannot  be  divided  into  two  closed  sets, 
the  two  closed  sets  of  points  at  which  respectively /^  A;  and/^^ 
{k  being  any  value  between  the  upper  and  lower  bounds  of/),  must 
have  a  common  point,  at  which  accordingly /=^. 

It  follows  from  the  second  of  the  above  properties  that  a  finite 
continuous  function  is  hounded.  The  word  continuous  is  therefore  often 

used  as  synonymous  with  finite  and  continuous^  and  this  usage  will  in 
the  present  tract  be  adopted,  except  where  the  contrary  is  stated. 
It  is  in  this  sense  that  the  word  continuous  must  be  understood  in  the 

following  alternative  definition  which  may  be  called  the  c-definition  of 
continuity. 

A  function  is  said  to  he  continuous  at  a  point  if,  given  any  positive 
quantity  e,  however  small,  we  can  find  a  closed  interval  with  that  point 
as  internal  point,  such  that  the  difference  between  the  upper  and  lower 

bounds  of  the  function — the  so-called  oscillation  of  the  function — in  that 
interval  is  less  than  c 

The  theorem  of  §  6  gives  us  a  standard  test  for  continuity,  viz.  a 
function  which  is  at  the  same  time  the  limit  of  a  monotone  descending 
and  of  a  monotone  ascending  sequence  of  continuous  functions  is  a 
continuous  function.  It  may  be  remarked  that  this  condition  is  not 

only  sufficient  but  also  necessary  ̂ ^^. 
The  set  of  limits  at  a  point  of  discontinuity  of  a  function  which 

is  continuous  throughout  an  open  intei'val  ending  at  that  point  is  of  the 
simplest  character,  namely  a  closed  interval.  To  prove  this  we  merely 
have  to  remark  that  if  k  is  any  value  less  than  <i>{a)  and  greater 
than  i/^  {a),  f(x)  assumes  values  both  >  k  and  <  k,  and  therefore  assumes 
the  value  ̂   at  a  point  of  the  open  interval.  Thus  k  is  certainly  one 
of  the  limits,  since  it  is  a  repeated  value  (§  4).  Therefore  the  set  of 
limits  consists  of  every  value  from  <^  (a)  to  xj/  (a)  inclusive. 

8.  Pointwise  discontinuous  flinction.  A  function  which, 
without  being  necessarily  continuous,  has  in  every  interval  a  point  of 
continuity  is  called  a  pointwise  discontinuous  function.  lii  other  words, 
the  points  of  continuity  of  such  a  function  are  everywhere  dense, 
without  necessarily  filling  up  any  interval.  It  will  now  be  proved 

that  a  finite  semi-continuous  function  is  pointwise  discontinuous  ^^K 
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For  simplicity  of  wording,  we  shall  suppose  f(x)  to  be  finite  and 

lower  semi-continuous,  so  that  inside  any  chosen  interval  we  can  choose 
an  interval  in  which /(^)  is  bounded  (§  6)  and 

/(^)<'A(^)^<A(^)   (1). 
We  remark  first,  that,  whatever  be  the  nature  of  a  bounded 

function /(^),  the  points  at  which 

<^{x)-f{x)^k   (2) 
can  in  no  case  fill  up  an  interval.  For,  if  a  were  an  internal  point  of 
such  an  interval,  we  should  have 

upper  Lt  <^  (x)  ̂  upper  htfix)  +  k  "^  <f>  (a)  +  k, x=a  x=a 

which  is  not  true,  since,  by  §  6,  <^  (x)  is  upper  semi-continuous  and  is 
bounded,  since  f(x)  is  bounded. 

In  our  case  <^  (^)  -f(x)  is  the  excess  of  an  upper  over  a  lower  semi- 
continuous  function  and  is  therefore  upper  semi-continuous.  Hence 
the  points  at  which  (2)  holds,  form  a  closed  set,  which  is  there- 

fore, by  what  precedes,  dense  nowhere.  There  must  therefore  be  an 
interval  throughout  which 

<l>{x)-f(x)<k. 
Repeating  this  process  in  this  interval  with  ̂ k  for  k,  and  so  on,  we 

arrive  at  a  point,  internal  to  all  the  successive  intervals,  at  which 
k 

<f>  (^)  -f(x)  <  - 

for  every  value  of  the  integer  n.  Therefore,  since  the  left-hand  side  is 
by  (1)  not  negative,  it  must,  at  this  point,  be  zero.  Hence,  using  (1) 
again,  at  this  point, 

which  proves  the  function  to  be  continuous  there,  and  therefore  to 
possess  a  point  of  continuity  in  every  interval. 

We  have  seen  that  the  limit  of  a  monotone  sequence  of  continuous 

functions  is  a  semi-continuous  function,  it  follows  therefore  from  the 
above  that  it  is  a  pointwise  discontinuous  function.  Baire  has 

proved  ̂^>'  ̂^^  that  the  limit  of  a  sequence  of  continuous  functions  is 
always  pointwise  discontinuous,  and  not  only  so  but  that  it  is  point- 
wise  discontinuous  with  respect  to  every  perfect  set ;  that  is  to  say, 
approaching  a  certain  point  a  of  any  perfect  set  by  means  of  points  of 
that  set  in  any  manner,  we  shall  get  iovf{x)  the  unique  limit /(a). 

The  following  example  shews  that,  even  when  the  sequence  of  continuous 
functions  is  monotone,  the  limiting  function  need  not  be  continuous. 
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V  1 
Ex.  3.     Let  fn  {x)  have  at  all  the  points  -^j  where  9<w+2,  the  value  -  , 

and  between  these  points  be  linear,  so  that  the  locus  y=fn{x)  is  a  broken 

line.  These  functions  are  continuous,  and  they  form  a  monotone  descending 

sequence.     Their  limiting  function  is  the  function /(^)  of  Ex.  2,  §  6. 

IV.     DIFFERENTIATION. 

9.  The  Incrementary  Ratio.  Derivates.  Differential 
coefficient.  Second  and  hig^her  differential  coefi&cients ; 
these  are  repeated  Umits.  If/(^)  is  a  (finite)  continuous  function 
of  a  single  real  variable  x  throughout  a  closed  interval  {a,  b),  the 
incrementary  ratio 

^   '^^  x-y 

is  a  function  of  the  ensemble  {x,  y)  defined  at  all  points  of  a  certain 

closed  square  except  on  the  diagonal  x=y^  and  is  continuous  at  every 
point  at  which  it  is  defined.  It  has,  like  a  proper  continuous  function, 
the  property  of  assuming  every  value  between  its  upper  and  lower 

bounds,  as  may  be  proved  without  difficulty  ̂ ^'^l 
The  limits  with  respect  to  yoim  (x,  y)  at  any  point  on  the  diagonal 

are  called  the  derivates  of  /(x)  at  the  point  x;  they  are  called  right 

or  left-hand  derivates,  according  &s  y>  x  or  y  <x,  and,  in  particular, 
the  upper  and  lower  limits  on  the  two  sides  are  called  the  upper  and 

lower  derivates  on  the  two  sides  ̂ ''l 
If  the  derivates  all  coincide,  their  common  value  is  called  the 

differential  coefficient  of  fix).  In  other  words /(iZ*)  has  at  the  point  x 
a  differential  coefficient  provided 

/  7N_/(^+^)-/(^) 

m{x,x^  h)  -  ~   ^ — -Lj^^A 

has  as  h  approaches  zero  in  any  manner  an  unique  limit,  and  this  limit 
is  the  value  of  the  differential  coefficient;  if  this  is  true  when  h  is 

positive  (negative)  the  value  is  that  of  the  right-hand  (left-hand) 

differential  coefficient*. 
Here  we  are  expressly  assuming  that  f{x)  is  finite  and  continuous. 

At  a  point  at  which  f{x)  is  not  finite,  or  is  discontinuous,  we  shall  say 
that  a  differential  coefficient  does  not  exist.  It  may  also  not  exist  at 
a  point  at  which  f{x)  is  continuous.     It  should,  however,  be  remarked 

*  Notice  that  by  the  differential  coefficient  at  the  left  (right)  hand  end-point  of 
the  interval  considered  we  mean  the  right  (left)  hand  differential  coefficient. 
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that  there  is  nothing  in  the  definition  to  prevent  f{x)  having  a  dif- 
ferential coefficient  at  a  point  cc  at  which  it  is  continuous,  even  when 

there  is  no  interval  containing  the  point  throughout  which  f{x)  is 
continuous. 

It  follows  from  the  definition  that  a  differential  coefficient  is  not 

necessarily  finite,  it  may  have  the  value  +  oo  or  -  oo  at  particular 
points.     At  such  a  point  the  differential  coefficient,  which  is  denoted 

hyf'ijv),  or  -j- ,  has  not  itself  a  differential  coefficient.     Moreover,  by 

Baire's  theorem,  quoted  in  the  last  article,  /'  (x)  is  a  pointwise  discon- 
tinuous, not  necessarily  continuous,  function  of  cc,  if  it  exists  at  every 

point  of  an  interval. 

If  /'  {x),  distinguished  in  this  connexion  as  the  first  differential 
coefficient,  exists  throughout  an  interval,  and  is  continuous  at  the 
point  X,  and  has  a  differential  coefficient  there,  that  differential 
coefficient  is  called  the  second  differential  coefficient  oi  f(x),  and  is d^f 

denoted  by  /"  {x),   or  -r-^ .     In  like  manner  the  higher  differential 

coefficients  oi  f{x),  if  they  exist,  are  defined  successively,  each  being 
the  differential  coefficient  of  its  predecessor. 

Thus  the  assumption  that  an  nth.  differential  coefficient,  or  dif- 

d^f 

ferential  coefficient  of  the  n-th  order,  f^'^'^  (x),  or  -^,  exists  at  a  point, 
carries  with  it  necessarily  the  existence,  the  finiteness  and  the  con- 

tinuity of  all  preceding  differential  coefficients  at  the  point,  and 
their  existence  and  finiteness  in  some  neighbourhood  of  the  point. 
It  does  not  imply  the  finiteness  of  the  nth  differential  coefficient 
itself  at  the  point,  nor  its  existence  in  the  neighbourhood,  still  less 
its  continuity  at  the  point. 

We  may  also  define  the  higher  differential  coefficients  as  repeated 
limits,  e.g.  the  second  differential  coefficient  as  the  repeated  limit,  if 

unique  ̂ ^\ 

j^^  j^^/(^  +  h  +  k)  -fix  +  h)  -fix  +  h)  +f{x) k=Q  ft=0  hk 

lO.  Differentiation  of  a  function  of  a  function.  Dif- 
ferentiation of  the  sum^  difference^  product  and  quotient 

of  two  functions.  Leibniz's  rule.  It  at  once  follows  that, 
if  u  is  a  function  of  x  having  a  differential  coefficient  at  a  certain 

•point,  and  x  is  a  function  of  t  having  a  differential  coefficient  at  the 
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corresponding  point,  then  u  is  a  function  of  t  having  a  differential 
coefficient  at  that  point,  and  it  is  given  hy  the  formula 

du  _  du    da; 

di~  dx'  dt' 
For  by  hypothesis  to  each  value  of  t  in  the  given  interval  there 

corresponds  a  value  of  x  in  the  interval  (a,  />)  and  to  this  x  a  value 
of  u.     Hence  u  may  be  regarded  as  a  function  of  t)   say, 

n  =  f{x)  =  F{t)    (1), 

^=gif)   (2), 

x  +  h  =  g{t  +  T)   (3). 

Now  however  r  approaches  the  limit  zero,  g{t  +  r)  approaches  the 
unique  limit  g  (t),  since  g  is  continuous.  Hence,  by  (2)  and  (3)  h  has 
the  unique  limit  zero.  Using  the  simultaneous  approach  of  h  and  t  to 
zero  in  the  identity 

F(t  +  r)+F(t)__f(x  +  h)-f(x)     g(t  +  r)-g(t) 
~  k  '     '  T    W 

the  right-hand  side  has,  under  the   specified  conditions,  the  unique 

limit  J-  •  -jI  J  so  that  the  left-hand  side  has  also  the  same  unique  limit, 

which  proves  the  theorem. 
By  repeated  application  of  the  above  rule  it  follows  that,  it  f(x) 

has  an  nth.  differential  coefficient  with  respect  to  x,  and  x  has  one 
with  respect  to  t,  then  /  is  a  function  of  t  having  an  nth.  differential 
coefficient  with  respect  to  t,  which  is  found  by  a  simple  rule. 

By  a  still  more  immediate  application  of  the  theory  of  limits,  we 

obtain  the  theorem  that  if  two  functions  u  and  v  have  each  a  dif- 
ferential coefficient  vnth  respect  to  x  at  a  particular  point,  so  have  their 

sum,  difference,  product  and  quotient,  and  tJiese  differential  coefficients 

are  7'espectively 
du     dv^     du     dv        du       dv 

dx     dx^   dx     dx^      dx       dx'      v"^ 

1  /  du       dv\ 

v"^  \  dx       dx)  ' 

These  are,  for  the  rest,  special  cases  of  the  formula  of  §  21. 
Repeated  application  of  these  rules  gives  us  the  nth  differential 

coefficient  of  the  compound  function  when  u  and  v  have  each  7ith 

differential  coefficients.  In  particular  we  get  Leibniz's  rule  for  the  n-th 
differential  coefficient  of  a  product,  which  may  be  written  symbolically 

d''        .      f    dv        du\ 
d^^^'^'^^rdx^-'dx) 
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where  the  right-hand  side  is  to  be  expanded  by  the  Binomial  Theorem, 

and  then  -^-^  substituted  for  (^j  and  -y^.  for  f-^  j  . 

V.     INDETERMINATE   FORMS. 

0       en 

11,    The  indeterminate  forms  ?: ,   — ,  first  rule.     A  dif- 

ferential  coefficient  is  the  first  example  encountered  by  the  student 
of  what  is  called  an  indeterminate  form. 

The  Theory  of  Indeterminate  Forms  has  usually  been  based  on  the 

Theorem  of  the  Mean  ('),  given  below  (§  15) ;  it  can  be  developed  inde- 
pendently, and  perhaps  still  more  simply,  as  the  following  shews. 

Theorem.  If  as  x  approaches  the  value  a,  f(x)  and  F{sc)  have  both 

the  unique  limit  zero^  or  +  oo  or  —  oo ,  then  the  limits  of 

f{^)IF{^)    (1) 

lie  between*  the  upper  and  lower  limits  of 

f'i^)IF'{^)   (2), 
provided 

A.  a  is  not  a  limiting  point  of  common  infinities  off  {x)  and  F'  {x) ; 
B.  a  is  not  a  limiting  point  of  zeros  of  F'  {x)  unless  these  zeros 

are  also  zeros  of  f  (x)  t ;  and 
C.  F(x)  is  monotone. 

Case  1.     Let  the  unique  limit  oif(x)  and  of  F(x)  be  zero. 
Assume  for  definiteness  that  F(x)  never  decreases  as  x  increases, 

so  that  F{x)  is  positive  and  F'  {x)  is  never  negative  in  a  sufficiently 
small  neighbourhood  {a  <  x).  It  will  suffice  to  prove  that  the  upper 
limit  of  (1)  is  :^  the  upper  limit  of  (2) ;  for  the  same  argument,  mutatis 
mutandis,  will  prove  that  the  lower  limit  of  (1)  is  ̂   the  lower  limit 
of  (2). 

We  may  suppose  that  there  is  a  finite  quantity  L  greater  than  the 

upper  limit  of  (2),  for,  if  not,  that  upper  limit  would  be  +qo  ,  and  what 
is  required  to  be  proved  is  obvious. 

We  then  have 

*  We  shall  say  that  x  lies  between  a  and  6  when  x  is  a  point  of  the  closed 
interval  (a,  h). 

t  It  will  be  seen  from  what  follows  later  in  the  Tract,  that  C.  is  included  in  B. 

should  a  not  be  a  limiting  point  of  zeros  of  i^'  («). 
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at  all  points  at  which /'(^r)  and  F'  (a;)  are  not  simultaneously  zero  in  a 
sufficiently  small  neighbourhood  {a<x).  Moreover  at  such  common 
zeros, 

f\x)-LF'{x)  =  {). 
Noting  further  that,  if  the  point  a  is  a  limiting  point  of  infinities  of 

F'  {x)^  none  of  which  can  accordingly  by  A.  be  infinities  of  /'(^)> 
L  is  certainly  positive,  we  have,  in  all  cases,  and  for  all  points  in 
such  a  neighbourhood, 

f'{x)-LF'(,x)^0   (3). 

Now  since/'  {x)  and  F'  (x)  are  never  infinite  together,  the  left-hand 
side  of  (3)  is  the  diflerential  coefficient  oi  f(x)-LF{x),  whence  it 
follows  ihdut  f  {x)  —  LF  {x)  never  increases.  But  zero  is  the  unique 
limit  oif{x)-LF{x)  at  the  point  a,  therefore  this  function  is  never 
positive  in  the  neighbourhood  considered.    Hence,  as  F{x)  is  positive, 

throughout  the  neighbourhood.  Therefore  the  upper  limit  of  (1)  as  ̂  
approaches  a  is  less  than  or  equal  to  L.  But  L  was  any  finite  quantity 
greater  than  the  upper  bound  of  (2).  Hence  the  upper  limit  of  (1)  is 
less  than  or  equal  to  the  upper  limit  of  (2),  as  was  to  be  shewn. 

Case  2.    f(x)  and  F(x)  each  have  an  infinite  limit. 
We  may  clearly  without  loss  of  generality  suppose  the  two  infinite 

limits  to  be  +  GO ,  since  otherwise  we  need  only  change  the  sign  of  one 
or  both  functions.  Similar  considerations  to  those  used  above  enable 

us  to  assume  that  F{x)  is  always  positive  and  F'{cc)  never  positive, 
throughout  the  chosen  interval,  and  to  assume  that  there  is  a  finite 
quantity  L  greater  than  the  upper  limit  of  (2). 

Then,  as  before,  remembering  that  F'  (x)  is  now  :^0, 
/'(x)-LF'(x)^0, 

the  convention  being  made,  as  before,  that  since  F'  {x)  ̂  0,  (2)  has  the 
opposite  sign  to  /'  (x),  so   that,  when  L  is  finite,  /'  {x)  cannot  be 
negative  at  a  point  where  F'  (x)  is  zero. 
Hence  f(x)-LF(x) 

never  decreases  as  x  increases  from  a,  and  has  therefore  its  lower 

bound  as  its  unique  limit  at  x  =  a. 
Now  suppose,  if  possible,  that  (1)  had  a  limit  greater  than  L,  say 

L  +  2e.     Then 

f(x)  -(L  +  e)  F{x),  that  is  f{x)-LF{x)  -  eF(x) 
is  positive  for  some  sequence  of  values  of  x  with  a  as  limiting  point. 
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But  F{x),  and  therefore  eF{x),  has  +  oo  as  unique  limit  at  ;r  =  a, 

therefore  the  same  is  true  oif{x)  -  LF{cc)  for  the  sequence  in  question. 
Hence,  by  the  above,  the  lower  bound  of  i^(^)  is  +  co ,  which  is  absurd. 

This  proves  the  theorem,  which,  it  will  be  noticed,  is  somewhat 
wider  in  its  scope  than  that  usually  given. 

Cor.  Under  the  same  provisos  as  in  the  theorem,  if  (2)  has  an 
unique  limit,  so  has  (1).  It  must  of  course  not  be  supposed  that,  if 
(1)  has  an  unique  limit,  (2)  has  one. 

We  have  tacitly  assumed  a  to  be  at  a  finite  distance,  and  the 
approach  to  be  in  the  direction  of  x  decreasing.  It  is  clear  that  the 
argument  is  perfectly  general,  and  the  approach  may  be  in  the  other 

direction.  Also  a  may  be  either  +  oo  or  —  go  ,  in  which  cases  the 
approach  will  be  in  the  appropriate  direction. 

12.     Second  rule  for  r  .     It  should  be  noticed  that  in  the 

preceding  theorem  no  assumption  is  made  as  to  the  existence  of  /'  (cc) 
and  F'(x)  at  the  point  a,  nor  indeed  do  we  assume  that  they  have  each 
an  unique  limit  as  x  approaches  a.  In  the  following  corollary  we 
assume  the  existence  of  certain  differential  coefficients  at  the  point  a, 
but  not  the  existence,  even  implicitly,  of  the  last  of  these  differential 
coefficients  in  the  neighbourhood  of  the  point  a. 

Cor.  If  f{x)  and  F(x)  vanish  when  x-a  and  at  that  point  have 
respectively  their  first  (r-l)  and  {s-l)  differential  coefficients  zero, 
while  their  r-th  and  s-th  differential  coefficients  respectively  are  finite,  and 
not  zero,  then 

fi^)IF(x)   (1) 

has  an  unique  limit  as  x  appi^oaches  a,  and  the  value  of  the  limit  is 

0,  f'\a)IF^'\al   07'  ±00, 
according  as  r>s,  r  =  s,  or  r<s;  moreover  the  sign  of  the  infinity  in 

the  last  case  is  +  or  —  accoi^ding  as  f^'^\a)  and  F^^\a)  have  the  same  or 
opposite  signs. 

Since /<"^(^)  exists  dX  x  =  a,  all  the  preceding  differential  coefficients 
exist  in  a  closed  neighbourhood  oi  x  =  a.     Hence 

h=Q       h"^  h=o    rh"^'^  h=Q       r\h 

but  since /('•-^)  (a)  =  0, 

A-^)(a  +  h)_  f^-'\a  +  h)  -f'-'^a) 
h  ~  h 
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SO  that,  by  the  definition  of /<')(«),  the  last  expression  has  the  limit 
/(^)(«).     Hence 

Similarly,  Lt  ̂ X^)  =  i.  jri^)  (,,). 71  =  0 

But  {,^l  =  h'-'§^^^ 
whence  the  theorem  at  once  follows,  since  h''  *  and  the  numerator  and 
denominator  of  the  fraction  multiplying  it  have  unique  limits. 

13.     The  Expansion  Theorem 

f  (a  +  h)  =  f  (a)  +hf'  (a)  +  ...  +^  h»»{fW  (a)  +  €}. 

The  property  of  possessing  a  differential  coefficient  of  higher  order 

than  the  first,  say  of  the  nth.  order,  can  in  part^"^  be  expressed  in  a 
form  precisely  analogous  to  what  may  be  called  the  €-definition  of 
a  differential  coefficient.  This  form  is  of  importance  both  for  its 
own  sake  and  because  it  suggests  the  corresponding  theorem,  much 

less  easily  proved,  concerning  functions  of  more  than  one  variable. 

Theorem.  If  f{x)  possesses  an  n-th  differential  coefficient  at  x-ay 
then 

f(a  +  h)  ̂f{a)  +  hf  (a)  +  Wf"  («)+••• 

(w-1)!        -"        ̂   ̂    n\ 
where  c  has  zero  as  unique  limit  when  h  approaches  zero  in  any  manner 
whatever. 

When  w  =  1,  the  theorem  is,  as  already  remarked,  identical  with 
the  definition. 

Put,  in  the  general  case, 

F{h)  =f{a  +  h)  -f(a)  -  hf  (a)-...  j^J^""-'^  W- 
Further,  put  G(h)  =  h\ 

Then  both  F(h)  and  G  (h)  are  finite  and  continuous  functions  of  h  in  an 

interval  containing  ̂  = 0,  and  G  (A)  is  monotone.   Also,  by  the  hypothesis 
made, 

F{h),  F'ih),  ...,  i^<»-'>(A), 

GQi\  G\h),  ...,  (?<''-'i(-5), 
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all  are  zero  at  the  origin ;   hence,  by  the   theory  of  indeterminate 
forms, 

by  definition.     Hence  the  required  result  follows. 
It  should  be  noticed  that  the  form  of  the  result  stated  in  the 

theorem  is,  like  most  statements  in  €-language,  lacking  in  generality,  it 

assumes  the  finiteness  of /<^)(a),  unless,  as  we  are  at  liberty  to  do,  we 
interpret  the  statement  of  the  theorem  suitably  in  the  case  when  /<")  {a) 
is  infinite,  namely  as  equivalent  to  the  statement  in  the  language  of 
limits  just  obtained. 

CoR.  The  reasoning  remains  unaltered  if^  instead  of  h^,  we  sub- 
stitute any  function  of  h,  all  of  whose  differential  coefficients  up  to  the 

{n-l)th  inclusive  vanish  at  h  =  0,  and  having  n\  as  n-th  differential 
coefficient,  provided  only  the  function  be  a  monotone  function  of  h,  and 
the  same  is  true  of  all  its  differential  coefficients  concerned. 

Thus  we  might  take  the  function 

^{,(«H-^)-,(«)-...-(/:-;^,,(-.(«)} 
provided  ̂ (")  (a)  is  not  zero. 

VI.     MAXIMA   AND   MINIMA. 

14.  Maxima  and  minima  of  a  function  of  a  single 
variable.  The  theorem  just  proved  gives  us  at  once  the  following 

criterion  for  a  maximum  or  minimum : — If  f{fc)  possesses  an  r-th 
differential  coefficient  at  the  point  x  —  a  which  is  not  zero^  and  if  all 
the  preceding  differential  coefficients  are  zero  there,  tJien  if  r  is  even, 

f{x)  is  a  maximum  or  minimum  at  the  point  x-a,  according  as  the 

sign  of  the  r-th  differential  coefficient  is  negative  or  positive.  If  r  is 
odd,  there  is  neither  a  maximum  nor  a  minimum. 

It  should  be  noticed  that  this  theorem  is  true  whether  or  not  the  rth 

differential  coefficient  is  finite  or  infinite,  as  follows  from  the  corre- 
sponding remark  as  to  the  theorem  of  the  last  article. 

It  should  also  be  noticed  that  we  have  not  assumed  the  existence 

of  the  rth  differential  coefficient  except  at  the  point  x  =  a,  still  less  its 
continuity  there  or  elsewhere. 
Y.  2 
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VII.     THE   THEOREM   OF   THE   MEAN. 

15.  The  Theorem  of  the  Mean.  A  differential  coefficient 

assumes  all  values  between  its  upper  and  lower  bounds. 
A  differential  coefficient  is  one  of  the  limits  of  differential 

coefficients  in  the  neighbourhood.  Before  proceeding  further 
we  must  prove  the  following  fundamental  theorem  known  as  the 
Theorem  of  the  Mean. 

Theorem.  Iff{x)  has  ̂^^  a  differential  coefficient  f  {nc)  at  every  point 
of  the  completely  open  interval  (a,  b),  and  is  continuous  also  at  a  and  b, 
there  is  a  point  x  of  the  completely  open  interval  (a,  b)  at  which  this 
differential  coefficient  is  equal  to  the  incrementary  ratio  m{a^  b\ 
that  is 

Case  1  (Bolle's  Them-em).    Let 

/(*)=/(«)  =  0. 
The  theorem  is  evident  in  the  trivial  case  when/(^)  =  0  at  every  point 
of  (a,  b).  If  this  is  not  the  case,  f{cc)  has  a  positive  upper  bound  or 
a  negative  lower  bound,  or  both,  and,  being  a  continuous  function, 
assumes  such  an  extreme  value  at  a  point  x  of  the  closed  interval  (a,  b) ; 

and  this  point  cannot  be  one  of  the  end-points  since  the  function  is 
zero  there.  At  such  a  point  x  the  numerators  in  both  the  incrementary 
ratios 

m{x  +  h,  x)  =  —   h 

J                                 /       I     ̂     f{^-h)-f(x) 
and  m{x-h,  x)  =  —   _i  > 

where  not  zero,  have  the  same  sign  for  every  value  of  h,  not  necessarily 
the  same  in  the  two  expressions,  less  than  a  certain  quantity. 

.     Hence,  making  h  approach  zero  in  both  incrementary  ratios, /'(^) 
is  both  ̂   0  and  ̂   0,  so  that 

which  proves  the  theorem. 

Case  2.     Let 

Let  z  denote  the  ordinate-distance  of  a  point  on  the  locus  y=f{x) 
from  the  chord  AB  joining  the  two  points  whose  abscissae  are  a  and  b. 
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Then  z  only  differs  by  a  constant  from  f{x)  -  mx^  where  m  is  written 
for  ?w(a,  6).  Thus  z  has  a  differential  coefficient  at  every  point  of 

the  closed  interval  («,  ̂),  and  is  zero  at  the  end-points.  Hence,  by 

Eolle's  Theorem, 

at  some  point  x  of  the  completely  open  interval  (a,  6),  that  is 

f  {x)-m  =  ̂ , 
which  proves  the  theorem. 

Cor.  1.  The  upper  and  lower  hounds  of  the  differential  coefficient 
in  any  interval,  open  or  closed^  are  the  same  as  those  of  the  incrementary 
ratio. 

Cor.  2.  The  differential  coefficient  like  the  incrementary  ratio 
assumes  every  value  between  its  upper  and  lower  hounds  in  any  closed 
interval  at  points  internal  to  that  interval. 

Cor.  3.  The  differential  coefficient  f  {x)  is  one  of  the  limits  of  the 
differential  coefficients  in  each  neighbourhood  of  the  point  x. 

For  at  some  point  ̂   of  the  completely  open  interval  {x,  x-^h) 

f'(^)  =  m(x+h,  x). 
As  we  let  A  ̂  0  (or  h  ̂  0)  move  up  to  zero  continuously,  ̂   will 

move  up  to  ̂   in  a  certain  determinate  manner,  not  necessarily  con- 

tinuously.    Moving  ̂   in  this  manner,  /'  (^)  has  the  same  unique  limit 
as  m  (^  +  h,  x),  that  is/'  (x). 

Ex.  /(0)  =  0,        (^^0), 

f{a;)  =  x^sm  —  ,         (0<x). 

Here  f  (^x)  =  2^*  sin   n  cos  -  ,         (0<a7), 

so  that  any  number  from  -  tt  to  tt,  both  inclusive,  is  a  limit  of  the  diflferential 
coefi&cients  on  the  right  of  the  origin. 

But  at  the  origin/'  (0)  =  0,  so  that  the  differential  coefficient  at  the  origin 
is  07ie  among  the  limits  of  differential  coefficients  in  the  neighbourhood. 

CoR.  4.  Iff  (x)  =  0  at  every  point  of  an  interval,  f{x)  is  constant 
throughout  that  interval. 

CoR.  5.  If  a  differential  coefficient  exist  throughout  an  interval,  the 
points  at  which  it  is  finite  must  he  dense  everywhere. 

The  remaining  points  have  been  shewn  to  form  a  set  of  content  zerot^s). 
It  must  not  be  supposed  that  a  differential  coefficient  cannot  be  zero  at 

points  dense  everywhere  in  an  interval  throughout  which  the  differential 

2—2 
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coefficient  exists,  without  the  original  function  being  a  constant (m).  Kopcke 
was  the  first  to  construct  such  a  non-constant  function,  a  so-called  every- 

where-oscillating function  (1^). 

VIII.      PARTIAL    DIFFERENTIATION   AND 
DIFFERENTIALS. 

1 6 .    Partial  differential  coefficients  of  various  orders .    If 

/is  a  function  of  two  or  more  variables  {x,  y,  ...),  it  becomes  a  function 

of  a  single  variable  x  when  we  keep  all  the  remaining  variables  con- 
stant, and  as  such  it  may  have  a  differential  coefficient,  called  the 

partial  differential  coefficient  with  respect  to  x  and  usually  denoted  by 

fx  0^  d-^  to   distinguish  it  from  the  total  differential  coefficient  -f- ox  ax 

obtained  by  making  the  remaining  variables  arbitrary  functions  of  x  and 
differentiating  by  the  rule  of  §  10  ;  in  English  writings  this  symbolism 

is  not  always  strictly  adhered  to,  and  -^  is  sometimes  used  for  the 

partial  differential  coefficient  when  there  is  no  danger  of  ambiguity. 
Thus 

"^X       h  =  Q  h 

and  is  a  function  of  (^,  y,  ...).  It  may  therefore  have  a  partial  differen- 
tial coefficient  with  respect  to  each  variable,  viz. 

dx  '  dx     dx''    *^'^'     dy '  dx     dydx  ~-^^^'  ® 
These  are  called  partial  differential  coefficients  of  fix)  of  the  second 
order  and  define  in  like  manner  those  of  the  third  order,  and  so  on. 

It  is  an  immediate  result  of  these  definitions  that  fr^  and  /^  are 
repeated  limits  of  the  double  incrementary  ratio 

m{a,h  ;  a  +  h,  b  +  k) 

_f(a  +  h,b  +  k)~/(a  +  h,  h)  -f{a,  h+k)  4-/fa  h) 
hk 

By  repeated  application  of  the  Theorem  of  the  Mean  it  follows 

that  \ifxy  exists  at  every  point  of  a  closed  rectangle  (a,b\  a  +  k,  b  +  k) 
there  is  an  internal  point  {x-^,  y^)  of  the  rectangle  such  that 

m(^a,b;  a  +  h,b  +  k) ̂ f^y  (x^,  y,). 
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Hence  it  follows  that  f^  and  fy^,^  if  they  exist  throughout  the 

rectangle,  assume  all  values  between  their  upper  and  lower  bounds  ̂ "^ — 
since,  as  is  easily  proved,  the  double  incrementary  ratio  does  so — 

and  also  that /a;y,/yx  and  m{x,y\  x\  y')  have  the  same  upper  and 
lower  bounds  ̂ \ 

A  knowledge  of  these  partial  differential  coefficients,  which  then 
take  the  place  of  the  successive  differential  coefficients  of  a  function  of 
a  single  variable,  no  longer  gives  us  the  equivalent  information.  The 
importance  in  the  case  of  a  function  of  a  single  variable  of  the 
differential  coefficients  consists  in  the  fact  that,  from  the  very  definition 

of  a  differential  coefficient,  the  theorem  of  §13  holds  for  n=\,  and 
hence,  also,  as  we  have  seen,  for  all  values  of  n.  No  corresponding 
theorem,  even  in  the  case  of  w==  1,  follows  from  the  mere  existence  of 
the  partial  differential  coefficients.  In  the  theory  of  functions  of  two 
or  more  variables  the  proper  correlative  of  the  differential  coefficient, 
in  the  case  of  a  function  of  a  single  variable,  is  not  the  ensemble  of 
the  partial  differential  coefficients  of  the  first  order,  but  what  is  called 

the  differential.  "We  proceed  therefore  to  give  a  brief  account  of  its 
theory,  confining  our  attention  in  the  first  instance  to  two  variables. 

17.  Differential.  A  function  f{x,y)  of  two  real  variables  is 
said  to  have  a  total  first  differential  at  the  point  (a,  b),  if 

A.  The  partial  differential  coefficients 

Ja-      g^         and    /,_      g^ 

both  exist  and  are  finite  at  the  point  (a,  b). 

B.  At  all  points  (a  +  h,  b  +  k)  of  a  closed  neighbourhood  of  the 
point  {a,  b)  the  function  can  be  expressed  as  follows 

f(a  +  h,  b  +  k)^f(a,  b)+hfa  +  kf  +  he-vke      (1), 
where  e  and  e  have  each  the  unique  double  limit  zero  when  h  and  k 

appi^oach  zero  in  any  manner  whatever. 
Note  1.     For  brevity  the  word  total  is  usually  omitted. 

Note  2.  hfa  +  kfiy  is  often  called  the  first  differential  oi  f(x,  y)  and 
denoted  by  df  It  should  be  noticed  that  this  name  is  only  properly 
applied  when  an  equation  of  the  form  (1)  holds. 

18.  Sufficient  conditions  for  the  existence  of  a  first 
differential. 

Lemma.     In  m^der  that  f  {x,  y)  may  have  a  first  differential^  it  is 
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sufficient,  hut  not  necessary,  beside  the  obvious  condition  that  fa  and  f^ 
sJwuld  both  exist  and  he  finite,  that  one  of  the  two  incrementary  ratios 

m^,,  (b,  b + k)  ̂ /(^±M±*)zZ(£±M) , 

»^.«(a,  a  +  h)  J(.^^h,b^k)-/{a,
b^k) _ 

should  have  an  unique  double  limit  when  h  and  k  approach  zero  in  any 
manner  whatever. 

This  is  an  immediate  consequence  of  the  identities 

f(a  +  h,  b  +  k)  -f(a,  b)  =  hm^  {a,  a  +  h)  +  knia+h  (b,  h  +  k) 
=  hmi>+]c  (a,  a+  h)  +  knia  (b,  b  +  k). 

Cor.     If  either  fx  or  fy  is  a  continuous  function  of  the  ensemble 
(x,  y)  at  the  point  {a,  b),  while  the  other  exists  at  that  point,  thenf(x,y} 
has  a  first  differential  at  (a,  b). 

For  in  this  case,  by  the  Theorem  of  the  Mean,  the  above  two 
incrementary  ratios  have  the  same  limit  as 

fy{a  +  h,b  +  Ok)  and  /« (a  +  eh,b  +  k),         (0<^<  1), 
viz.,  /{,  and /a  respectively. 

19.     The  Fundamental  Theorem  of  Differentials. 

Theorem.     If  df/dx  and  (f/dy  each  have  differentials  of  the  first 
order  at  the  point  {x,  y),  then 

dx  dy      By  dx  * 
and  their  common  value  is  also  the  unique  double  limit  of  the  double 
incrementary  ratio 

miser,  x^Ky^k)  Ji^^h,y^k)-f{o^^h,^y)-f{^,y^kyf{^,y) 
as  h  and  k  approach  zero  in  any  manner  whatever. 

Since  ̂   has  a  differential, 

fx{x  +  h,y  +  k)-fx{x,y)  =  h{fxcc  +  e)  +  k{fyx  +  e')      (1), 
where  e  and  e  have  zero  as  unique  double  limit  as  h  and  k  approach 
their  limit  zero.     Now 

fx{x  +  h,y  +  k)-fx{x,ij) 

_fx{x-\-h,y  +  k)-fx{x  +  h,y)  j^  Jx{x'rh,y)-f^{x,  y)  j^ k                                              h 

J.{.x^ h,  y  ̂ k)-M^^  h,  y)  ̂  ̂  ^^^^ ^„^ ̂    ^2X 

where  e"  vanishes  with  h,  however  k  varies. 
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Equating  the  right-hand  sides  of  (1)  and  (2)  by  dividing  by  k,  we  get 

f^{x-^h,y^-Tc)-f^{x^h,y)  _h{e-e")  .  ̂        ,  . 
  1   1   +Jyx  +  e   (a;. 

Hence,  however  h  and  k  proceed  to  their  limit  zero,  provided  hjk 
does  not  become  infinite,  that  is  kjh  does  not  become  zero,  the  right-hand 
side  of  (3)  has  the  Hmit/^,^,  so  that  the  same  is  true  of  the  left-hand  side 
of  (3).    In  the  same  way  we  prove,  by  considering /j,  and  interchanging 

^  and  y,  that/^  '^^  ̂̂ '^^  ̂ ^"-^^  ̂̂ ^  ̂  ̂  ̂̂  has  the  unique  limits,  for  all 
modes  of  approach  of  (^,  k)  to  (0,  0),  provided  hjk  has  not  zero  for  limit. 

Now,  writing        niy (^,  x  +  h)  =fJ^±lhJllIi^iy) ^ 

we  have  by  the  Theorem  of  the  Mean 

m{x,y]x  +  h,y  +  k)=    ̂ ^"^     ^   ^-^   ^- = -^my^eic{x,x+h), 
where  0  <  ̂  <  1. 

Hence      m(^,  y;  ̂   +  4  y +  /fc)=-^^(^^^- y^^^^'-^''^^' y-^^^\..(4). 
Now,  if  (h,  k)  moves  towards  (0,  0)  in  such  a  way  that  hjk  has  not  zero 
as  limit,  hjOk  will  not  have  zero  for  a  limit ;  and  therefore,  by  what  has 

been  proved,  the  right-hand  side  of  (4)  will  have  the  unique  double 
limit /a,j/,  and  therefore  the  same  is  true  oimix^y,  x+  h,y  +  k). 

Similarly,  if  (h,  k)  moves  towards  (0,  0)  in  such  a  way  that  k/h 
has  not  zero  for  a  limit,  m  will  hsL\efyx  for  unique  double  limit. 

Since  we  can  choose  a  mode  of  approach  of  (A,  k)  to  (0,  0)  for  which 

neither  h/k  nor  k/h  has  zero  for  a  limit,  it  follows  that  j^  =/ya;-  Hence 
for  every  mode  of  approach  m(x,y;  x+/i,  y+k)  has  an  unique  limit 

whose  value  is/^^^  =fyx;  this  proves  the  theoreuk 

Cor.  If  throughout  a  closed  neighbourhood  of  a  point  (a,  h)  the 

(n—l)th partial  differential  coefficients  off{x, y)  all  exist  and  are  inde- 
pendent of  the  order  of  differentiation,  and  have  first  differentials  at 

{a,  b),  then  the  order  of  differentiation  is  indifferent  in  the  n-th  dif- 
ferential coefficients  at  the  point  {a,  b). 

For  a  formal  proof  of  this  corollary  the  reader  is  referred  to  the 

original  memoir  ̂ '^''l 

20.  Second  and  higher  differentials.  The  higher  dif- 
ferentials are  defined,  like  the  higher  differential  coefficients,  succes- 

sively, and,  like  the  differential  coefficients,  must  be  understood  only 
to  exist  at  a  point  when  all  the  preceding  differentials  exist  not  only 
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at  that  point,  but  also  in  a  closed  neighbourhood  of  that  point. 
Another  analogy  between  the  definitions  consists  in  the  fact  that 
whereas  the  first  differential,  like  the  first  differential  coefficient,  is 
defined  by  means  of  a  process  involving  the  function  f{x^  y)  itself,  the 
higher  difierentials,  like  the  higher  differential  coefficients,  are  defined 
by  means  of  the  same  process  involving  not  the  function  itself  directly 
but  the  preceding  differential. 

Definition  of  the  second  differential  d  y.    Jf  the  first  differential 
dfy  in  which  we  regard  h  and  h  as  arbitrary  constants,  has  a  first 

differential  at  the  point  (a,  b),  this  differential  is  called  the  second  dif- 
ferential off  at  the  point  {a,  b),  and  is  denoted  by  d^f 

This  is  clearly  equivalent  to  the  following : 
If /a;  and/y  exist  in  a  closed  neighbourhood  of  the  point  (a,  b),  and 

have  first  differentials  at  the  point  (a,  b),  then  provided  f  has  a  first 
differential  in  the  neighbourhood  of  {a,  b), 

hdf^+  kdfy 

is  called  the  second  differential  of/,  or,  say, 

dy=  hdj^  +  kdfy  =  h  (hf^  +  kfy^)  +  k  {hf^  +  kfy^. 

It  should  be  noticed  that  we  are  following  closely  the  analogy  with  the 
theory  in  the  case  of  one  independent  variable.     We  define,  in  fact, 

fix)  as  the  limit  of 

f{x^h)-f{x) h 

that  is,  virtually  by  means  of  the  equation 

f{x^h)-f{x)-h\f{x)^e-\, 
but  we  do  not  define  /"  {x)  by  a  similar  expansion  statement,  not,  for 
example,  as  the  limit  of 

f{x^h)-f{x)-hf'{x) w 
but  as  the  differential  coefficient  of/'  {pc). 

It  is  worth  remarking  that  the  mere  fact  that  fx  and  fy  have  first 
differentials  at  the  point  (a,  b\  necessitating  as  it  does  the  continuity 
of  /x  and  fy  with  respect  to  the  ensemble  {x,  y)  at  the  point  {a,  b), 
involves  the  existence  of  df  there,  but  not,  of  course,  necessarily  in  the 
neighbourhood  of  that  point. 

By  the  Fundamental  Theorem  of  Differentials  (§  19)  it  now  follows 
that  when  df  exists, 

Jab  ~y&a> 
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30  that  we  may  write  the  second  differential  in  the  following  form 

dV=hVaa  +  2hkfa,  +  k'f,,, 

hj-  +  k-^)  f 

Definition  of  the  wth  differential  df.  If  the  (n  -  l)th  dif- 
ferential^ in  which  we  regard  h  and  h  as  arbitrary  constants,  has  a  first 

differential  at  the  point  {a,  b),  this  differential  is  called  the  n-th  dif- 

ferential of  f  at  the  point  (a,  b),  and  is  denoted  by  d^f. 
Here,  as  before,  we  get 

dy=  h^'dfj-  +  nh^'-^h  dfa^-\  +  . . . 

-i:e)'-*^.=©.  ■*■')■■ 
or,  symbolically, 

and  we  shew  that  the  order  of  differentiation  is  indifferent  to  the 

partial  differential  coefficients  of  the  ?^th  order  at  the  point  («,  6),  using 
for  this  purpose  the  Corollary  of  §  19. 

It  follows  at  once  from  the  definitions  that,  if  f  has  an  n-th  dif- 

ferential at  (a,  b),  then  df  has  an  (n—  \)th  differential  at  (a,  b),  and 
that  f  itself  has  all  the  differentials  up  to  the  (n  —  l)th  inclusive,  not  only 
at  (a,  b)  but  also  in  a  suitable  neighbourhood  of  the  point  (a,  b). 

2 1 .  Successive  dififerentiation  of  a  ftinction  of  two  or 
more  flinctions.  It  follows  from  the  definition  of  a  differential 

that,  if  u  is  a  function  of  x  and  y,  and  x  and  y  are  functions  of  t,  and 
ifi  for  any  particular  value  of  t,u  possesses  a  differential  with  respect 
to  (x,  y),  and  X  and  y  possess  differential  coefficients  with  respect  to  t, 
then  u  is  a  function  of  t  which  possesses  a  differential  coefficient  there, 
whose  value  is  given  by  the  equation 

du  _  du    dx     du    dy 

dt      dx '  dt     dy'  dt' 
or,  if  there  are  mm^e  subsidiary  functions  (see  below  §  24), 

du  _^  du    dxi 

dt      i  dXi '  dt  ' Moreover,  successive  application  of  the  Fundamental  Theorem  of 
Differentials  gives  us  the  following  important  result : 

if  /(^>  y)  possesses  an  n-th  differential  at  the  point  considered, 
then  we  may  obtain  the  n-th  differential  coefficient  with  respect  to  t  by 
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repeated  application  of  this  rule,  and  may,  at  each  stage  of  the  process, 

regard  the  m^der  of  partial  differentiation  with  respect  to  x  and  y  as 
indiffei'ent  up  to  the  highest  differential  coefficients  which  occm\ 

We  may  remark  that,  in  the  application  of  this  rule,  it  is  un- 
necessary to  assume  that  the  highest  differential  coefficients  which 

occur  are  continuous. 

The  above  rule,  which  includes  as  special  cases  the  rules  for  the 

differentiation  of  a  sum,  difference,  product  or  quotient  of  two' 
functions,  is  formally  unaltered  when  we  come  to  deal  with  functions 

of  more  variables  possessing  differentials,  except  that  the  total  dif- 
ferential coefficients  are  replaced  by  differentials.  We  have  in  fact 

the  following  theorem : 
If  a  function  f  of  two  or  more  variables  Xi  possess  a  differential  with 

respect  to  them,  and  each  Xiis  a  function  of  certain  other  variables  tn, 
and  possesses  a  differential  at  a  certain  point  (7\,  T^,  •••)»  thenf  is  a 
function  of  the  variables  t^  and  possesses  a  differential  at  the  point  in 
question,  given  by 

df=^  —  dxi. i    OXi 

Similar  remarks  to  those  made  above  about  the  repeated  appli- 

cation of  the  rule  apply  here.  In  particular  Leibniz's  formula  for  the 
successive  differential  coefficients  of  a  product  is  valid  for  differentials, 

with  the  same  change  of  the  symbol  -r.  into  d. 

22.  Theorem  of  the  Mean  for  two  variables.  Corre- 
sponding to  the  Theorem  of  the  Mean  for  one  variable,  we  have  the 

following  Theorem  of  the  Mean  for  two  variables : 

Iff(a,  b)  =  0  andf  {A,E)  =  0,  while  f{x,  y)  has  a  first  differential 
throughout  an  area  containing  the  whole  stretch  from  (a,  b)  to  {A,  B\ 
then  there  is  a  point  (x,  y)  internal  to  that  stretch  at  which 

(^-a)f^  +  (y-b)fj=0. 
Put  x  =  a  +  (A-a)t,         y  =  b  +  (B-b)t; 

then,  by  the  Theorem  of  the  Mean  for  a  single  variable, 

for  some  value  of  t  internal  to  the  interval  (0,  1),  which  corresponds 
therefore  to  a  point  (x,  y)  internal  to  the  stretch  from  (a,  b)  to  {A,  B). 

But,  since /(^,  3/)  has  a  differential  throughout  the  area  considered, 

0=|'=(^-«)/,  +  (^-6)/„=^[(^-«)/.  +  (y-*)/,], 
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X  —  a      y  —  h 
since  -j   =  -^ — r, 
which  proves  the  theorem. 

•; 

23.     The  Expansion  Theorem 

f  (a  +  h,  b  +  k)  =f  (a,  b) +df  (a,  b)  +  ...  +  jif  (d'^f+En) 

We  are  now  in  a  position  to  state  and  prove  the  expansion  theorem 
for  two  variables  which  corresponds  to  that  given  in  §  13  for  a  single 
variable.     We  begin  by  repeating  the  following  statement : 

If  f{x,  y)  has  a  first  differential  at  the  point  {a,  b),  we  may  expand 
/fe  y)  i^  the  neighbourJwod  of  (a,  b)  in  the  following  form : 

f{a  +  h,  b  +  k)  =f(a,  b)  +  df(a,  b)  +  he^  +  Jce^, 
where  e^  and  e^  have  each  the  unique  double  limit  zero  when  h  and  k 

approach  zero  in  any  manner  whatever. 
This  is,  in  fact,  only  another  form  of  writing  the  equation  used  in 

the  definition  of  the  first  differential. 

We  next  prove  a  second  special  case  of  the  expansion  theorem 
we  have  in  view,  viz.: 

If  f{Xj  y)  has  a  first  differential  at  the  point  {a,  b),  and  df/dx,  df/dy 
have  first  differentials  at  the  same  point,  then 

f{a  +  ̂,  6  +  k) 

=f(a,  b)  +  df{a,  b)  +  i  (hVaa  +  2hkfa,  +  k'f,)  +  \  {h%  +  2hke,  +  k^^e,), 
where  ei,  e^  and  e^  each  have  the  unique  double  limit  zero  when  h  and  k 
approach  zero  in  any  manner  whatever. 

For  the  conditions  of  §  19  are  satisfied,  so  that  m{a  +  h,b  +  k',  a,b) 
has  the  unique  limit /a^  or/^a.     Hence 

f(a  +  h,b  +  k)  -f{a  +  h,  b)  -f{a,  b+k)  +f{a,  b)  =  hk  {fab  +  e^), 
where  e-i  has  the  unique  double  limit  zero. 

But,  since /ott  and/b»,  exist  and  are  finite,  we  have,  by  one-dimensional 
theory  (§  13), 

h^ 

f{a  +  h,  b)  -f{a,  b)  =  hfa  +  ̂ ^  {faa  +  6l), 

f{a,  b  +  k)  -f{a,  b)  =  kfb  +  — ,  (fw  +  ̂ 3), 

where  ei  vanishes  with  h,  independently  of  k,  and  e^  vanishes  with  k^ 
independently  of  h. 

Adding  the  three  last  equations,  the  theorem  follows. 

Note.  The  condition  that  f(x,  y)  has  a  first  differential  at  the 
point  is,  of  course,  included  in  the  further  conditions  of  the  enunciation. 
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Cor.     IffQo,  y)  has  a  second  differential  at  the  point  {a,  b), 

f{a  •¥h,b  +  k)  =/(a,  b)  +  df(a,  b)  +  Jc?y(a,  6)  +  J  {k\  +  "Ihhe^  + 
We  now  proceed  to  prove  the  general  theorem  of  which  that  of  §  13 

is  a  particular  case. 

Theorem.  If  fix,  y)  has  an  (n-l)th  differential  at  the  point 
(a,  b)j  where  n^3,  while  the  (n-l)th  differential  coefficients  exist  and 
are  independent  of  the  order  of  differentiation  in  a  closed  neighbour- 

hood of  the  point  (a,  6),  and  have  first  differentials  at  (a,  b\  then  the 

"n-th  expansion  theorem  "  k)lds,  that  is  to  say 
fifi  +h,  b  +  k) 

=f(a,  b)  +  df{a,  b)  +  \cPf{a,  6)  +  ...  +  i-,  (g,  ...Ja,  kj  +  i^„, 

where  En=  2    (    )^,J"-'-F  =  (^o,  ̂i,  ■••,en\h,k)\ r=o  \r/ 

and  the  quantities  er  all  have  zero  as  unique  double  limit  when  h  and  k 
approach  zero  in  any  manner  whatever. 

Let  4 J  hi   ...J  4  be  any  functions  of  a,  b,  h,  and  k,  such  that 
identically 

0  =f{a  ̂ h,b  +  k)  -f{a,  b)  -  dfia,  b)  -\dj{a,b)- ... 

In  the  right-hand  side  of  this  identity  change  h  into  {x -a)  and  k  into 
(y-b),  excepting  only  in  lo,  h,  ...,  In,  which  are  left  unaltered,  and 
denote  the  result  by  g  (x,  y),  so  that 

g{x,  y)  =f{x,  y)  -f(a,  ̂ >)  -  ||  (^ - «)  +  |  (y  -  6)} 

ijg,...j[^-a,2/-6y-... 

1  r^y 

1      /8«-y 

x-a, 

—J  (4,  li,  "-,  ln^x-a,y-bf 

■)
■ 

.(2). 

Then  g  (a,  &)  =  0,     g(a  +  h,  b  +  k)  =  0. 

Also,  since  f(x,  y)  has  a  first  differential  in  the  neighbourhood  of  the 
point  (a,  b),  g  (x,  y)  has  the  same  property,  so  that,  by  §  22,  there  is  a 
point  (x,  y)  internal  to  the  stretch  from  (a,  b)  to  (a  +  A,  b  +  k\  such 
that 

(x-a)g^+(y-b)gy^O    (3). 
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Now,  since 

ana  ^^m-r+ig^r-l       aa^^-^a^*"-^ ' 

we  get,  by  diiferentiating  (2), 

^»=/.-/<.-[(^-a)f+(y-ft)|"]-- 

Thus,  {/*#^^  (7i  - 1)^^  expansion  theorem  liolds  for  f^y 

~  (n-l)\  (^0.  ̂i>  •  •  • .  4-i5^ -<*,«/-  hf-^ 
1     9    /9V     7  9V     /X  A*" 

+  /^_-^N,K,  e/,  ...^e'n-^oo-a^y-hf-"-, 

where  the  e's  have  zero  as  limit,  when  h  and  Jc,  and  therefore  (^  -  a) 
and  (2/  -  h),  have  zero  as  limit. 

A  similar  expression  holds  for  gy^  provided  the  {n—  l)th  expansion 

theorem  holds  for  fy,  this  expression  involving  quantities  el',  el\  ...,  ̂ „", 
which  again  have  zero  as  double  limit. 

Thus,  by  (3), 

+  7;^^7^|(^o,  eu  ...,  en^x-a,i/-by...(4:), 

where  ner  =  {11  —  r)  e/  +  ̂ ^r" 

for  all  values  of  r,  en  and  e^'  having  each  the  value  zero ;  thus  the  e's 
have  zero  as  unique  double  limit  when  h  and  k  approach  zero  in  any 
manner  whatever. 
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But  ^  =  -^*, 
h  k    * so  that,  from  (4), 

(/„  /„  ...,  h\h,  *)"=  (^,  -{a,  kj  +  En, 
and  substituting  this  in  (1),  the  required  expansion  follows. 

This  proves  the  theorem  when  w  =  3.  For  we  are  given  that 
Jxx,  fxyi  fyy  havo  first  differentials  at  the  point,  so  that,  as  proved  on 
p.  27,/a,  and/y  have  the  second  expansion  property  required  in  the  above 

proof. 
If  ̂i  >  3,  the  theorem  will  be  proved  if  we  are  able  to  shew  that  /„ 

and/j,  possess  the  (n  -  l)th  expansion  property. 
Proceeding  on  the  same  lines  as  before,  we  reduce  the  task  of  shewing 

that  this  is  the  case  to  that  of  proving  that/a^,/a^  and/^  possess  the 

(n  -  2)th  expansion  property.  We  know,  in  fact,  that  f^  and  fy  have 
(n  -  2)th  differentials  at  (a,  b),  since  /  has  an  (n  -  l)th  differential  at 
that  point.  Therefore,  since  n  —  2>l,f^  and  fy  have  second  differentials 
at  (a,  b),  and  therefore,  by  the  definition,  first  differentials  in  a  closed 
neighbourhood  of  (a,  b),  which  is  required  for  the  application  of  the 

lemma.  Also  we  know  that/^^;,  f^nj  and/j,y  have  (n  -  3)th  differentials, 
since  /  has  an  (ii  —  l)th  differential  at  (a,  b).  Hence  the  argument 
already  used  applies  mutatis  mutandis. 

Proceeding  thus  successively  we  reduce  the  problem  to  shewing  that 

the  (n  —  2)th  partial  differential  coefficients  have  the  second  expansion 
property,  which  follows  from  p.  27,  since  we  are  given  that  their 
differential  coefficients  have  first  differentials  at  {a,  b). 

Thus  in  any  case  the  theorem  is  demonstrated. 

Cor.     If /possesses  an  n-th  differential  at  the  point  (a,  b)j  then 

f(a-^h,b  +  k)=f(a,b)-^df+j-^dY+...+^dV+^^£;n. 

24.  Differentials  of  a  flinction  of  more  than  two 

variables.  We  have  hitherto  tacitly  assumed  more  than  once  that 
the  theory  of  the  differentials  of  functions  of  two  variables  is  typical  of 
that  in  the  case  of  more  variables.  At  the  present  stage  it  is  advisable 

to  examine  what  modifications  are  necessary  in  §§  19 — 23  to  make  them 
apply  to  functions  of  n  variables  where  n  >  2.  We  have  then  n,  instead 

of  two,  partial  differential  coefficients,  /a,^,  /a,^,  •••  which,  as  in  §  17,  are 
assumed  to  be  finite,  and  to  appear  linearly  in  the  equation 
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the  quantities  Bi,  62,  .-.,  ̂ n  having  zero  as  unique  w-ple  limit  when  the 

A's  approach  zero  in  any  manner  whatever.  As  in  §  18  we  get  a  set  of 
sufficient  conditions  for  the  existence  of  a  differential  at  a  certain 

point,  demanding  that  one  of  the  partial  incrementary  ratios  should 

have  an  unique  n--p\e  limit,  one  an  unique  (?^-  l)-ple  limit,  and  so  on, 
one  an  unique  double  limit  and  the  last  an  unique  simple  limit, 
viz.  the  corresponding  partial  differential  coefficient.  This  gives  the 

corollary  : — If  at  the  point  (cCu  a2,  ...,  an)  all  the  partial  differential 
coefficients  exists  all  but  one  are  continuous  with  respect  to  {x^,  x^,  all 
but  one  of  those  remaining  with  respect  to  {xx,  x^,  X3),  and  so  on,  finally 
the  last  one  is  continuous  with  respect  to(xi,X2,.--,  Xn),  thenf(xi ,  ̂2  >  •  •  • ,  ̂n) 
has  a  first  differential  at  the  point  (xi,  X2,  -",Xn).  The  fundamental 
theorem  of  §  19  applies  as  it  stands,  since  all  but  two  of  the 
independent  variables  may  be  kept  constant  during  the  discussion. 
Hence  the  definitions  of  the  second  and  higher  differentials  and  the 
remaining  investigations  of  §§  20  and  21  apply,  as  well  as  the  statement 
and  proof  of  the  Theorem  of  the  Mean  for  n  variables  (§  22),  the 
equation  involved  being  now 

2  (xr  -  a^f^  =  0. r 

As  regards  §  23,  the  reasoning  on  p.  27  is  no  longer  sufficient ;  the 

proof  on  pp.  28,  29  however  applies  when  w>2,  and  also  when  ?^  =  2, 
provided  we  add  to  the  assumptions  the  express  condition  that 
f{xx,X2,  ••.,^»)  has  a  first  differential  in  the  neighbourhood  of  the 
point  («i,  a^,  '■-■>  an),  in  which  case  we  have  the  condition  of  the 
corollary  on  p.  28.  With  this  gloss  the  expansion  theorem  of  §  23 
certainly  holds  for  any  number  of  variables.  The  conditions  for  a 
maximum  or  minimum  are  therefore  as  stated  in  §  25. 

IX.     MAXIMA   AND   MINIMA  FOR   MORE   THAN    ONE 
VARIABLE. 

25.  Maxima  and  minima  of  a  function  of  tTvo  or  more 

variables.  Want  of  space  forbids  us  to  enter  into  a  long  discussion 
of  this  subject,  but  it  is  worth  while  noting  that  the  result  just 
obtained  gives  us  the  following  rule,  analogous  to  that  already  stated 

for  one  dimension  : — If  f  possesses  a  non-zero  n-th  differential  at  the 

point  (a,  b)  and  if  all  preceding  diffe/i^entials  vanish  there,  then,  unless 
n  is  odd,  f  is  neither  a  maximum  nor  a  minimum,  while,  if  n  is  even, 

f  is  a  minimum  if  the  n-th  differential  be  essentially  positive,  and  a 
maximum  if  it  be  essentially  negative. 
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Here   two  things  should  be  noted.     No  assumption  is  made 
to  the  continuity  of  the  nth  differential  coefficients  at  the  point  (a,  h\ 
indeed  we  do  not  even  assume  their  existence  in  the  neighbourhood  of 
the  point  {a,  b).     In  the  second  place,  it  is  to  be  understood  that  the 
wth  differential  is  not  to  be  zero  for  any  values  of  h  and  k  other  thai 
zero. 

X.  EXTENSIONS  OF  THE  THEOREM  OF  THE  MEAN. 

26.  The  Remainder  Form  of  Taylor's  Theorem ; 
Lagrange's  form.  The  fact  that  we  can  pass  from  the  definition 
of  a  differential  coefficient  to  an  equation  of  the  form  given  in  §  15, 
suggests  the  possibility  of  extending  the  Theorem  of  the  Mean  so  as  to 
involve  the  wth  differential  coefficient.  We  propose  here  to  state  and 
prove  the  following  theorem  : 

Theorem.      If  f  <""^)  (a)  exists  and  is  finite,  and  f  <">  (x)  exists 
throughout  the  completely  open  interval  (a,  a  +  h),  then 

/(a  +  h-0)^f(a)  +  hf'{a)  +  ... 

1        -'  1/(^-1)  (a)  +  -i:/<'^)  (a  +  Oh),      (0<0<  1), 
(n-l)l         -"         ̂ ^     n\ 

where  /{a  +  h-0)  is  any  one  of  the  limits  of  the  function  f(x)  as  x 
approaches  the  value  a  +  h. 

[Note.  Here  f{x),  f  (x),  ... ,  /('^'^J  (x)  are  necessarily  continuous 
in  the  half-open  interval  {a^  x  <a  +  h),  but  we  do  not  assume  the 

continuity  at  the  point  x  =  a  of /^""^^  (^r),  nor  the  existence  of/  or 
any  of  its  differential  coefficients  &t  x^a  +  h,  nor  do  we  assume  the 

finiteness  of  /<^)  (a)  in  the  open  interval. 
The  case  of  this  theorem  when  the  interval  considered  is  completely 

closed  and  all  the  functions  up  to  /("-^)  at  least  are  continuous 
throughout  the  whole  closed  interval  is  often,  for  a  reason  that  will 

appear  later,  referred  to  as  Lagrange's  Remainder  Form  of  Taylor's 
Theorem.] 

"We  require  first  of  all  a  slight  modification  of  the  Theorem  of  the 
Mean,  which  is  easily  proved,  viz.  the  following  : 

If  f{a  +  0)  and  f(h  -  0)  denote  respectively  any  one  of  the  limits  of 
f{x)  to  the  right  of  a  and  any  one  to  the  left  of  b,  then,  provided 

(1)  f(x)  is  continuous  and  finite  in  the  open  interval,  a<x<b; 
(2)f(x)  has  a  differential  coefficient  at  every  point  of  the  open  interval^ 
then  there  is  a  point  x  of  the  open  interval  such  that 

fib-0)-f(a-^0)  =  (b-a)f'(x). 
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If/ is  itself  a  diflPerential  coefficient  of  another  function,  and  exists 
at  the  point  a  without  necessarily  being  continuous  there,  then  one  of 
the  values  of/ (a  +  0)  is /(a)  itself,  and  we  may  write 

Now  supposing  the  theorem  proved  for  the  integers  1,  2,  ..., 

(ji-l),  we  can  prove  it  for  n  by  induction.  In  fact,  defining  the 
constant  L  and  the  function  F{x)  by  the  following  equations  : — 

/(„  +  A-0)-/(a)-¥'(«)-...-^^,/»-»(«)  =  A»i   (1), 

-  -%^V"'-"(«)-i;(-^-«)''=^(^)  -(a), 
we  get,  as  before,  a  point  Xi  such  that 

F'  (x,)  =/' (a:,) -f  (a)  -  ...-(gZ^>-)(„)-„i(^, -«)«-=  0...(3). 
Now  by  hypothesis  the  theorem  holds  for  the  integer  (n-l)  and 

the  function  /'  (x).  Hence  there  is  a  point  x.2  between  x  and  a  such that 

Substituting  for  L  in  (1)  the  theorem  now  follows,  if  it  has  been 

proved  true  for  w  =  1  and  n=-2. 

But  when  w  =  2  we  are  given  that  /'(a)  exists,  while  f'(x)  is  not 
necessarily  continuous  at  ̂   =  a,  and  (3)  becomes 

F'  (xO  =/'  (x,)  -f  {a)  -  2X  (^1  -  a)  -  0. 

Hence,  since  fioi)  is  one  of  the  limits  of/'  {pc)  as  x  approaches  a,  this 
gives  by  the  above  modified  Theorem  of  the  Mean, 

(^1  -  a)f"  {x^  -  2L  (xi  -a)  =  0, 

whence  /"  (^2)  =  2i/, 
which  proves  the  theorem  for  n  =  2,  and  completes  the  induction. 

27.     The  Fractional  Theorem  of  the  Mean, 

f(b-0)-f(a  +  0)    _  f  (xi) 

F(b-0)-F(a  +  0)"F'(xi)" 
The  following  extension  of  the  Theorem  of  the  Mean  is  of  con- 

siderable importance  and  includes  it  as  a  particular  case. 

Theorem.  If  fix)  and  Fix)  be  functions  which  him  differential 
coefficients  at  every  point  of  the  open  interval  ia<x<  b),  these  differential 

Y.  -  3 
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coefficients  having  in  the  open  interval  no  common  zeros  or  infinities,  then 

/(b-0)-f(a  +  0)  J\x,) 
F(b-0)-ll\a-\-0)     F\x,) 

for  some  point  Wi  of  the  open  interval.    Here  the  sequences  of  values  of  x 

yielding  the  limits  f{b  -  0)  and  f(a  +  0)  are  sup^wsed  to  he  the  same  as 
those  yielding  the  limits  F(b-0)  and  F(a  +  0)  and  the  meaning 

otherwise  is  that  o/*  §  26. 

Case  1.     Let/(^  -  0)  ~f{a  +  0)  be  not  zero. 

Put  g  {x)  =f{x)  -  f{a  +  0)-m  [F{x)  -  F{a  +  0)], 

where  m  denotes  the  left-hand  side  of  the  equality  to  be  proved. 

Evidently  ^  (6  -  0)  -  ̂   (a  +  0)  =  0. 

Moreover  since/' (^)  and  F'  {x)  are  never  infinite  together,  g{x)  is 
certainly  difFerentiable,  as  well  as  continuous,  throughout  the  open 
interval. 

Hence  (§  26),  for  some  value  x^  of  the  completely  open  interval, 

that  is  0  =/'  (^i)  -  mF '  (x,). 

This  equation  would  give  us  no  information  if/'  and  F'  were  known 
to  have  common  zeros,  as  x-^  would  presumably  be  one  of  these  zeros. 

As  such  common  zeros  do  not  exist,  it  is  evident  that  neither/'  nor  F' 
can  be  zero  at  x  =  Xi,  and,  as  they  have  no  common  infinities,  it  is 
equally  evident  that  their  values  when  x  =  Xx  are  not  infinite.  Dividing 

then  the  last  equation  by  F'  (x),  we  get  the  equality  to  be  proved. 
Case  2.     Let  f(b  -  0)  -f(a  +  0)  be  zero. 

Then  a  point  Xi  exists,  by  §  26,  at  which  f'(x\)  is  zero,  and  F'  (xi\ 
by  the  hypothesis,  is  not  zero.    Thus  the  theorem  is  still  true. 

In  the  above  investigation  we  have  not,  in  the  statement  of  the 

theorem,  expressly  excluded  the  possibility  of  F(b  —  0)  —  F(a  +  0) 
vanishing,  because,  with  the  ordinary  symbolism,  the  fraction  m  would 

then  not  have  any  existence.  Of  course,  however,  iif(b  —  0)  —f(a  +  0) 
does  not  vanish,  both  sides  of  the  equation  to  be  proved  assume  the 
same  form  c/0,  where  c  has  a  value  necessarily  different  from  zero,  and 

in  general  different  on  the  two  sides  of  the  equation.  It  is  of  im- 

portance to  remark  that,  iif(b  -  0)  -J  (a  +  0)  and  F(b  -  0)  -F(a  +  0) 
are  both  zero,  then  an  internal  point  of  the  interval  can  be  found  such 

that/'  (x)/F'  (x)  has  there  any  assigned  value  we  please.  In  fact  the 
above  argument  then  applies,  if  m,  instead  of  the  meaning  there 
attached  to  it,  is  supposed  to  have  the  value  in  question. I 
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28.  Other  Remainder  Forms  of  Taylor^s  Theorem; 
Schlomilch-Roche's^  Lagrange's  and  Cauchy's  Forms.    We 
can  obtain  yet  another  extension  of  the  Theorem  of  the  Mean,  which 
combines  to  a  certain  extent  the  results  of  the  last  two  articles,  and 

is  not  without  importance  in  the  theory  of  Taylor's  series.  This 
theorem  is  as  follows : 

Theorem  ('^^  If  f{x)  and  all  its  differential  coefficients  up  to  the 
{n  —  l)th  inclusive  exist  and  are  continuous  in  the  closed  interval 

(a-^  x^a  +  h),  while  the  n-th  differential  coefficient  exists  in  the  com- 
pletely open  interval  (a  <  x  <  a  +  h),  and  if  F{x)  is  continuous  in  the 

whole  closed  interval  and  differentiahle  throughout  the  open  interval  in 
such  a  manner  that  F{x)  and  f(x)  have  no  common  zeros  or  infinities 
in  that  open  interval^  then 

f{a  +  h)  =/{a)  +  V'  («)+•..  +  (^'Jyi  /("'^^  («) 
F{a^h)-F{a)   h^-^jl-OT-^ 

F'(a  +  eh)     '       {n-l)\      -^     K(^  +  ̂f^h        iu<(?<i
;. 

In  all  but  the  last  term  on  the  right-hand  side  write  y  for  a  and 
b-  y  ior  h,  and  denote  the  sum  of  these  terms  by  g  (y),  and  denote  by 
Bn  the  excess  of  the  left-hand  side  over  the  right-hand  side  omitting  the 
last  term. 

Then  we  have  only  to  prove  that  the  last  term  is  equal  to  Bn  • 
Evidently  we  have 

Bn  =  gib) -9(a). 
and  therefore 

^n        _  g(b)-g{a) 

F{b)-F{a)     F{b)-F{a)' 

But  9{y)-{b-yf-V(-Hy)l{n-l)\, 
Hence,  applying  the  theorem  of  the  last  article,  we  get  the  required 

result. 

CoR.  By  putting  F(x)  =  (a  +  h-  xY,  we  get  the  well-known 

Bemainder  Form  of  Taylor's  Theorem  due  to  Schlomilch  and  Boche, 
in  which  the  last  term,  w  remainder,  is 

(w-l)!r*^     ̂   ^ 
If  in  this  foi'm  we  put  r  =  1,  we  get  that  due  to  Cauchy,  and  if  we  put 
r  =  n  that  due  to  Lagrange-  (§  26). 

3—2 
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29.  The  Remainder  Form  of  Taylor's  Theorem  fo 
several  variables.  We  now  proceed  to  give  an  extended  form  of 
the  Theorem  of  the  Mean  involving  differential  coefficients  of  the  nth 
order,  applicable  to  a  function  of  more  than  one  variable. 

Theorem.  I//  (x,  y)  jyossesses  all  its  differentials  up  to  the  (n  -  l)tk 
inclusive  in  a  closed  neighbourhood  of  the  point  (a,  b),  and  an  n-th 
differential  exists  in  the  open  neighbourhood,  that  is,  the  closed  neigh- 

bourhood omitting  the  point  (a,  h),  then,  the  point  {ao,  y)  being  in  that 
open  neighbourhood, 

/fe  y)  =/(«,  ̂ )  +  [(^  -  «)  fa  +  {y-  ̂ )/b]  + . . . 

where  (^,  yf)  is  an  internal  point  of  the  stretch  from  {a,  b)  to  {x,  y). 
To  prove  this,  consider  the  function  /(« +  ut,  b  +  vt)^  F{t)  say, 

where  u  and  v  are  constants  for  the  purposes  of  the  investigation. 

Then  we  may  apply  the  one-dimensional  Taylor's  Theorem  in  Lagrange's 
Remainder  Form  (§  26)  to  the  function  F{t),  defined  as  follows  : — 

F{t)  =F(0)  +  tF\0)  +  ...  +  (^^Yv  ̂''"'-^''"'W  +  ̂  ^''^"  W' 
where  0  <r  <t. 

But,  by  §  21, 

^^«=(''a>  %!,)>• 
To   find  the   values   of   these    expressions   when   ̂   ̂  0,   we   have 

obviously  only  to  write  a  for  x  and  b  for  y.     Hence 

+ 
ni 
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^B        Hence,  finally,  putting  ut  =  x-a,  vt^y-b,  we  get  the  required 
^M  result. 

^"  It  should  be  noticed  that  this  is  a  much  more  general  result  than 

that  usually  given  under  the  name  of  Cauchy's  Theorem,  which  requires 
the  continuity  of  all  the  nth.  differential  coefficients. 

We  have  used  Lagrange's  form  of  the  remainder  theorem  for  one 
variable ;  the  same  argument,  word  for  word,  applies  if  we  take  the 

Schlomilch-Roche  form  (§  28).  It  is  hardly  necessary  to  add  that  the 
whole  argument  applies  whatever  be  the  number  of  variables  (see 
below  §  32). 

XI.     IMPLICIT  FUNCTIONS. 

30.  Existence  and  differentials  of  an  implicit  f\inction 
defined  by  a  single  equation.  So  far  all  the  functions  that 
have  been  considered  are  supposed  to  be  so  defined  that  there  could 
be  no  question  as  to  their  existence,  or  as  to  that  of  the  differential 
coefficients  which  occur  in  the  various  theorems.  Moreover,  these 

diff'erential  coefficients  are  supposed  capable  of  determination  by  the 
ordinary  simple  rules. 

We  now  consider  an  important  class  of  functions  of  a  single  variable 
defined  by  the  equation  to  zero  of  a  function  of  two.  variables. 

Theorem.  If  f{x^  y)  be  a  function  of  x  and  y,  whose  value  at 
the  point  {a,  b)  is  zero,  and  which  in  a  certain  closed  neighbourhood  of 
the  point  (a,  b)  is  continuous  with  respect  to  x  and  with  respect  to  y,  and 
possesses  at  the  same  point  a  finite  differential  coefficient  with  respect  to 
y,  viz.fi  which  is  different  from  zero,  then  a  function  y  of  x  exists  vnth 
the  following  properties  : 

(1)  Its  value  is  b  when  x  is  a. 

(2)  When  substituted  in  f(x,  y)  it  makes  f{x,  y)  zero  throughout  a 
certain  neighbourhood  of  the  point  {a,  b). 

(3)  Further,  if,  for  each  fixed  value  of  x,f  is  throughout  some  closed 
neighbourhood  of  the  point  (a,  b)  a  monotone  never  constant  function  of 
y,  this  function  y  of  x  is  unique. 

(4)  Further,  if  f  is  a  continuous  function  of  the  ensemble  (x,  y)  in 
the  closed  neighbourhood  of  the  point  {a,  b),  this  function  y  of  x  is  a 
continuous  function  of  x. 

(5)  Finally,  if  f  possesses  at  the  point  (a,  b)  a  first  differential,  then 
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this  /unction  y  of  x  possesses  at  the  point  x  =  a  a  first  diJerentiaS 
coefficient,  whose  value  p  is  given  by  m 

fa+pfl>  =  ̂ '  1 
For  definiteness  it  will  be  assumed  that  f  is  positive.  It  theni 

follows  from  the  definition  of  a  differential  coefficient,  and  the  fact 
that  /(a,  h)  is  zero,  that  we  can  find  a  stretch  on  the  ordinate  of  the 
point  (a,  b\  having  that  point  as  centre,  such  that  in  the  upper  half/ 
is  greater  than  zero,  and  in  the  lower  half  it  is  less  than  zero.  Hence 

also,  since/ is  continuous  with  respect  to  x,  we  can  draw  two  stretches* 
parallel  to  the  axis  of  x,  having  the  end-points  of  the  stretch  just  found 
for  centres,  and  of  equal  length,  such  that  in  the  upper  one /is  greater 
than  zero,  and  in  the  lower  one /is  less  than  zero. 

Completing  this  rectangle  t  we  obtain  a  closed  neighbourhood  of  the 
point  (a,  h),  such  that  in  it  on  each  ordinate /has  a  positive  value  and 
a  negative  value,  and  therefore,  since/  is  continuous  with  respect  to  y, 
/  assumes  the  value  zero  at  one  or  more  points  forming  a  closed  set 

(§  7). 
The  ̂ -coordinate  of  the  lowest  of  these  points  on  each  ordinate 

constitutes  a  function  y  of  x  having  the  properties  (1)  and  (2). 
If/  is  for  each  fixed  value  of  ̂   a  monotone  never  constant  function 

of  y,  this  function  y  of  x  is  unique,  for /then  only  assumes  each  of  its 
values  once  on  each  ordinate,  in  particular,  /  is  zero  once  only.  This 
proves  (3). 

To  prove  (4),  we  only  have  to  notice  that,  if /is  continuous  with 
respect  to  the  ensemble  (x,  y),  the  plane  |  set  of  all  its  zeros  in  the 
closed  neighbourhood  chosen  forms  a  closed  set.  Hence,  taking  any 
sequence  Xi,  x^,  ...  having  x  as  limit,  the  coiTCsponding  zeros  have  as 
limit  the  zero  on  the  limiting  ordinate,  so  that  the  function  y  of  x  has 
for  every  value  of  x  a  value  equal  to  the  unique  limit  of  values  in  the 
neighbourhood,  i.e.  it  is  a  continuous  function  of  x. 

Finally,  if/ has  a  first  differential  at  the  point  (a,  b),  there  is  a  closed 
neighbourhood  of  the  point  such  that  throughout  it 

f(a  +  h,  b  +  k)  =  h(fa  +  e,)  +  k(/u  +  e^), 

where  the  ̂ 's  have  zero  as  limit  when  h  and  k  approach  zero  in  any 
manner.     Hence,  inserting  for  b  +  k  our  function  y, 

0  =  (x-a)(/a  +  e,')  +  (y-b)(fi,  +  e2),   ■ 
*  In  the  corresponding  (n  +  1) -dimensional  discussion  these  are  what  may  be 

called  hyper- stretches :  thus  for  three  dimensions  they  are  squares,  for  four  dimen- 
sions cubes,  and  so  on. 

t  (w-fl) -dimensional  parallelepiped.  J  (n-f  l)-dimensional. 
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. ,    ,  y-h       fa  +  ex so  that  -  =  -  TT- —  , 

where,  when  a;  approaches  a  in  any  manner,  y  being  continuous  has  the 
limit  h,  and  therefore  e^  and  e^  both  have  the  limit  zero. 

Proceeding  to  the  limit,  we  have,  by  the  definition  of  a  differential 
coefficient. 

dx~    -^"Z^^' 
that  is,

  
fa+pfh=^0. 

[Note.  If  the  condition  which  secures  the  uniqueness  be  omitted,  it 
is  evident  that  the  uppermost  of  all  the  functions  y  oi  x  which  make 

/=0  is  upper-semi-continuous,  and  that  the  lowest  is  lower-semi- 
continuous.] 

CoR.  1.  We  may  replace  the  condition  that  throughout  the  neigh- 
bourhood f  should  he  for  each  fixed  value  of  x  a  monotone  nowhere 

constant  function  of  y,  by  the  condition  that  fy  should  exist  throughout 
a  closed  neighbourhood  of  (a,  b)  and  be  nowhere  zero. 

In  fact,  lifj  is  nowhere  zero  in  the  neighbourhood  it  has  always  the 
same  sign  on  each  ordinate,  since  for  each  fixed  value  of  x  it  assumes 
on  the  corresponding  ordinate  every  value  between  its  upper  and  lower 
bounds,  and  therefore  could  not  have  opposite  signs  without  being 
somewhere  zero. 

It  is  for  the  rest  clear  by  applying  the  Theorem  of  the  Mean  that, 
if/  vanishes  at  two  points  on  an  ordinate  fy  must  vanish  at  some  point 
between  the  two  points,  so  that  the  condition  in  question  necessarily 
excludes  this  possibility. 

Cor.  2.  We  may  replace  the  condition  in  question  by  the  following : — 
that  fj  sJwuld  exist  throughout  a  closed  neighbourhood  of  the  point  (a,  b), 
and  be  continuous  at  that  point  with  respect  to  the  ensemble  (^,  y). 

For  in  this  case  we  can  assign  a  closed  neighbourhood  of  the  point 
(a,  6)  throughout  which  fy  has  the  same  sign  as  at  («,  b\  and  therefore 
never  vanishes,  so  that  we  can  apply  Cor.  1. 

31,  Theorem.  Iff{x,  y)  is  a  function  of  the  ensemble  (x,  y) 
which  is  zero  at  (a,  b),  and  possesses  there  an  n-th  differential,  where  n 
is  greater  than  unity,  then,  provided  fy  is  not  zero  at  the  point  (a,  b), 
we  can  find  a  closed  neighbourhood  of  the  point  (a,  b),  in  which  there  is 

one,  and  only  one,  function  g{x)  of  x  which  has  the  value  b  when  x  =  a 
and  when  substituted  for  y  makes  f{x,  y)  identically  zero.  Further,  this 

function  possesses  an  n-th  differential  coefficient  at  the  point  (a,  b)  which 
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may  he  obtained  by  equating  to  zero  the  successive  total  differential 

coefficients  of  the  function  f{x,  y),  obtained  by  the  m-dinary  rule. 
First,  to  prove  the  theorem  when  n  =  2,  we  remark  that,  since  the 

function  has  a  second  differential  at  the  point  («,  6),  a  first  differential 
exists  at  and  in  a  closed  neighbourhood  of  the  point  («,  b).  Also  since 
/has  a  second  dififerential  at  the  point  («,  b\  fy  has  a  first  differential 
there,  and  is  therefore  continuous  at  (a,  b).  Hence,  remembering  that 
f  is  difiterent  from  zero,  we  may  so  choose  our  neighbourhood  that/j,  is 
different  from  zero  at  every  point  considered.  The  neighbourhood  so 
chosen  is  then  such  that  the  conditions  of  §  30  are  satisfied  at  every 

point.  Hence  corresponding  to  each  point  x  there  is  a  "tile,"  that  is, 
a  closed  rectangle  with  x  as  centre,  and  in  this  tile  a  unique  function 

g  (x),  such  that  f[xj  g(x)]  is  identically  zero  throughout  the  tile,  and 
further 

/.  +  /(^)/.  =  0   (1), 

9^  +  ̂ '9^)/fe2^)  =  0, 
where,  after  differentiating,  we  have  to  insert  g  {x)  for  y. 

These  tiles  overlap,  but,  since  in  each  tile  the  function  g  (x)  is 
unique,  it  follows  that  the  value  of  g  (x)  is  independent  of  the  particular 
tile  used  in  determining  its  value,  and  is  the  same  whether  or  no  that 
tile  was  the  one  with  x  as  centre.  Thus  we  have  an  unique  function 

g(x)  defined  throughout  the  whole  neighbourhood,  and  it  has  a  dif- 
ferential coefficient  at  each  point,  given  by  the  identical  equation  (1). 

Now,  since/  has  a  second  differential  at  the  point  {a,  b),fx  and/^ 

both  have  first  differentials  there,  and  consequently  have  total  differ- 
ential coefficients  with  respect  to  x  when  we  replace  yhyg  (x).  Also 

the  right-hand,  and  therefore  the  left-hand,  side  of  (1)  has  a  total 
differential  coefficient  whose  value  is  zero.  Thus,  since  fy  is  not  zero 

at  (a,  b),  we  may  apply  §  21,  and  say  that  g'  (x)  has  a  first  differential 
coefficient  at  the  point  (a,  b),  and  that  it  is  given  by  totally  differen- 

tiating the  identity  (1)  with  respect  to  x,  and  putting  x=^a,  y  =  b. 
That  is,  g(x)  possesses  a  second  differential  coefficient,  and  it  is 
given  by 

faa  +  2/„,/  (a)  +fb  {g  {a)Y  +fg"  {a)  =  0,  , 
or,  say,  symbolically 

Yx^^\y)  /(^'2/)=0,     {x  =  a,  y^b\ 

I 
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that  is,  it  is  obtained  by  equating  to  zero  the  total  differential  coefficient 

of  the  second  order  oifijjc,  y)  with  respect  to  x,  when  y  ̂  g  (x). 
It  will  be  noticed  that  we  have,  in  performing  the  total  differentiation, 

made  no  distinction  between /«?,  and/^^,  in  accordance  with  the  results 

already  proved  (§  19). 
This  proves  the  theorem  when  w  =  2. 
Again,  if  w  =  3,  not  only,  as  we  saw,  is  fy  different  from  zero  at  each 

point  of  the  neighbourhood  of  (a,  b),  but  at  each  such  point  /  has  a 
second  differential,  so  that  the  above  reasoning  applies,  and  we  may 
assert  that  at  each  such  point  g  (x)  has  a  second  differential  given  by 

that  is,  by  (/^,  ...][1,  gj+fyg'(x)  =  0    (2). 
The  reasoning  by  which  we  now  deduce  the  existence  and  value  of 

g" (a)  from  (2)  is  precisely  similar  to  that  by  which  we  deduced  the 
existence  and  value  of  ̂ "  (a)  from  (1)  in  the  case  when  n  =  2. 

For,  since  /  has  a  third  differential  at  (a,  b),  f^cx,  fxy  and  f^  have 

first  differentials  there.  Also  g'  {x)  has  a  first  differential  coefficient, 
and  therefore  a  first  differential  at  the  same  point.  Since  the  product 
and  the  sum  of  functions  having  a  first  differential  at  (a,  b)  is  a 
function  having  a  first  differential  there,  it  follows  that  the  quadratic 

if XX,  •\^,  g'y  has  a  first  differential  at  (a,  b\  Moreover /^  has  a 
first  differential  at  the  same  point.  Hence  both  these  functions 

{fxx,  •••$!?  g'y  and/i/  have  total  differential  coefficients  with  respect 
to  X,  when  we  replace  y  by  g{x).  Again  the  right-hand  side,  and 
therefore  the  left-hand  side,  of  (2)  has  the  total  differential  coefficient 
zero.  Thus,  since  /<,  is  different  from  zero,  we  may  apply  §  21,  and 

say  that  g"  {x)  has  a  first  differential  coefficient  at  the  point  (a,  6), 
and  that  it  is  given  by  totally  differentiating  the  identity  (2)  with 

respect  to  .r,  and  putting  ̂   =  a,  y^b.  That  is,  g" {a)  exists,  and  is 
given  by 

{fma,  •  • .  5;  1,  gj  +  3  {fai>  +  g'  {a)M  f  ■^-fj.g"  =  0, 
or,  symbolically,  by 

(a^  +  ̂ '^)  /fe3/)=-0,     {x  =  a,  y  =  b). 
This  proves  the  theorem  for  n  =  3.  We  have  now  only  to  notice  that, 
if  we  have  proved  the  theorem  for  ?i  =  r,  it  follows  by  corresponding 
reasoning  that  it  is  true  for  w  =  r  +  1.  Hence,  by  induction,  the  truth 
of  the  theorem  follows. 
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32.  Equations  giving^  the  successive  dififerential  coeffi- 
cients of  an  implicit  function.  The  equations,  giving  in  order 

the  successive  differential  coefficients,  when  written  out  at  length  are 
as  follows : 

(1)     (i  +  3/'|,)/=0,     or    f.-^-yfy^O 

dy, 

(3)  (/^,  "-^hyy+^(/xy+y%,)y"+/yy"  =  0; 

(4)  (/^,  ...5i,y)^  +  6(/^,  .••1i,y7y"  +  s/yyy"' 

and  so  on. 

It  should  be  noticed  that  it  follows  from  the  mode  of  formation  of 

these  equations  that  the  coefficients  are  partial  differential  coefficients 
of /such  that,  if  any  coefficient  involves  r  differentiations  with  respect 
to  y,  it  is  multiplied  by  precisely  r  differential  coefficients  of  y. 

33.     Implicit  function  of  two  or  more  variables.     If  now 
in  §  30  we  interpret  the  symbol  ̂   to  mean  the  ensemble  (^i,  ̂^2,  ••• ,  ̂n), 
so  that  /(^,  y)  means  /(a^i,  x-^,  ...,  ̂ „,  y\  the  theorem  becomes  a 
theorem  in  the  theory  of  functions  of  (^  + 1)  variables,  no  alteration  in 
the  wording  being  required  except  in  the  last  clause  which  should 
now  read  as  follows : 

(5)  Finally^  if  f  possesses  at  the  point  (a,  h)  a  first  differential,  then 

at  the  point  x^a  this  function  y  of  x  possesses  a  first  differential,  whose 
value  dy  is  given  by  the  symbolic  equation 

{that  is,  written  out  in  full, 

hifx,  +  h2fx,  +  ••■  +  hnfx,,  +  dyfy  -  0), 

in  which  the  x's  are  to  be  replaced  by  a's  and  y  by  b. 
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The  proof  of  this  theorem  is  almost  word  for  word  the  same  as 
before;  the  insignificant  verbal  alterations  have  been  already  given 
in  footnotes. 

34.  Equations  giving  the  differentials  of  such  an  implicit 
flinction.  Article  31  may  similarly  be  interpreted  in  space  of 

(n+1)  dimensions.  We  merely  have  to  change  "  differential  coeffi- 
cient" in  the  enunciation  into  "differential."  It  is  unnecessary  to 

reproduce  the  proof. 
The  r-th  differential  of  y  at  the  point  a  is  given  symbolically  by  the 

eqtiation 

I 
( 

»8r*4'^-"' jtist  aSj  in  the  simple  ca^se  when  there  is  only  one  ̂ ,  it  was  given  by 

This  equation  when  expanded  has  precisely  the  same  form  as  in  §  32,  the 
successive  differential  coefficients  of  y  being  replaced  by  the  successive 

differentials  dy,  d%  d^y,  ...,  d''y,  and  differentiation  with  respect  to  x 

being  replaced  by  the  operator  h  r-  which  gives  the  partial  differential 

ox 

with  respect  to  the  x's  alone. 

35.  Plurality  of  solutions.  It  should  be  noticed  that  in  §  30, 
although  the  uniqueness  of  the  solution  is  made  use  of  in  the  proof  of 
the  continuity  of  y,  considered  as  a  function  of  x,  in  the  neighbourhood 

of  the  point  x=a,  each  solution,  even  when  not  unique,  is  continuous  for 
any  value  of  x  such  that  on  the  corresponding  ordinate  there  is  only  one 
zero  of  f{x,  y\  the  neighbourhood  being  chosen  sufficiently  small ;  in 

particular,  this  is  the  case  at  the  point  x  =  a  itself,  if  there  is  no 
sequence  of  values  of  y  with  b  as  limit  for  each  of  which  f{a,  y)  =  0. 
This  follows  from  the  reasoning  used  in  the  proof  of  §  30.  If  this  be 
the  case,  the  reasoning  used  in  the  proof  of  the  property  (5)  still  applies 
whether  or  not  the  solution  is  unique;  that  is  to  say,  if/(^,  ?/)  has  a 
first  differential  at  (a,  b),  each  of  the  solutions  has  a  differential  coeffi- 

cient at  the  point  x^a,  and  the  value  of  this  differential  coefficient  is 
the  same  for  all  solutions  and  is  given  by 

An  interesting  application  of  this  is  constituted  by  the  following 
theorem. 
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36.  Change    of  the   dependent   into   the  independent 
.  _ ,        dx     dy       - 

-variable ;  :;-  .  t^  =  1 . '   dy     dx 
Theorem.     If  g  (x)  is  a  function  of  x  which  has  the  value  b  when 

x  =  a,  and  possesses  at  the  point  x  =  a  a  finite  non-vanishing  differential 
coefficient,  then  there  exists  at  least  one  inverse  function  x  of  y  which 

has  the  value  a  when  y=h,  and  in  a  certain  closed  neighbourhood  of 
the  point  y  =  b  renders  the  equation 

y  =  9(^)  '  ' 
an  identity ;  further,  at  the  point  y-b  all  these  functions  possess  a 
common  differential  coefficient  whose  value  is  \lg  (a). 

To  prove  this,  we  have,  in  fact,  only  to  put 

and  apply  the  above.  For,  when  x  =  a,  there  is  no  value  of  y  other 
than  b  which  makes  f{x,  y)  vanish. 

37.  Case  of  uniqueness  of  the  inverse  flinction.  Exist- 
ence of  its  higher  differential  coefficients.  It  follows  at  once 

from  §  30,  or  is  otherwise  evident,  that,  if  the  function  g  (x),  mentioned 

in  the  enunciation  of  the  preceding  theorem,  is,  in  a  closed  neighbour- 

hood of  the  point  x  =  a,'d  monotone  function  of  x,  the  function  ̂   of  y  is 

unique.     In  this  case  -r-  exists  at  the  point,  even  if  -~  is  zero  there, 

being,  in  fact,  infinite  with  determinate  sign. 
An  important  case  in  which  f(x)  is  monotone  is  that  in  which 

g'  (x)  exists  in  the  neighbourhood  of  x  =  a,  and  is  nowhere  zero. 
Moreover  applying  §  31   we  get  the  following  theorem: 

Theorem.  If  g  (x)  is  a  function  of  x  which  has  the  value  b  when 

w  =  a,  and  possesses  at  the  point  x  =  a  a  finite  n-th  differential  coefficient 
where  w  >  2,  and  if  g  (a)  is  different  from  zero,  there  is  one,  and  only  one, 

function  x  of  y  which  has  the  value  a  when  y  =  b,  and  renders  the 
equation 

an  identity  in  a  certain  closed  neighbourhood  of  the  point  y  =  b.  M&re- 
over  this  function  x  of  y  possesses  an  n-th  differential  coefficient  at  the 

point. 
38.  Existence  and  differentials  of  implicit  functions 

defined  by  two  or  more  equations. 

Theorem.  If  f\  (x,  y),  f^ (x,  y),  ...,fr  {x,  y)  are  r  functions  of  the 

m  variables  x  and  the  r  variables  y,  which  are  zero  when  the  x's  are 
equal  to  a's  and  the  y's  to  b's,  i.e.,  at  the  point  {a,  b),  and  have  n-th 



THE   DIFFERENTIAL   CALCULUS 45 

differentials  there,  where  n^  2,  and  if  the  Jacohian  J  of  the  fs  with 
respect  to  the  ys 

¥.  ^fr 

^  ¥r 

is  not  zero  at  the  point  (a,  b),  then  there  exist  unique  functions  y^,  y'2,--',yr 
of  the  m  variables  x,  which  have  the  values  bi,  b^,  ...,  b,.  at  the  point  a, 

and,  throughout  a  closed  neighboui'hood  of  that  point,  make  all  the  f's 
identically  zero.  Moreover  these  functions  y  have  n-th  differentials  at 
the  point  a,  whose  values  may  be  obtained  from  equations,  which  in 
symbolic  form  are 

d dy, 

Since  the  Jacobian  J  is  not  zero,  at  least  one  of  all  its  principal 
minors  is  not  zero,  and  we  may  assume,  without  loss  of  generality, 
that  it  has  been  so  arranged  that  the  leading  principal  minor  is  not 
zero.  It  then  follows  that  one  of  the  principal  minors  of  that  principal 
minor  is  not  zero,  and  we  may  assume  that  the  determinant  is  so 
arranged  that  that  principal  minor  is  the  leading  minor.  Proceeding 
thus,  we  may  assume  that  the  determinant  has  been  so  arranged  that 
none  of  the  leading  minors. 

(^^^  +  %^y^-  =  0,     (^  =  l,  2,  ...,  7^;i=l,  2,  ...,  r). 

^1 

J.= 

¥1 ^yi 

are  zero  at  the  point  (a,  b\ 

,       J>  = 

3/. 

3/. 

a/. 

%3 

Then,  since 

3 
fl^n 

5/3 

^fz 

^y-2 

^y-i 

dbi 

and  /i  has  an  7ith.  differential  at  the  point  (a,  b),  where  ?^  ̂   2,  there  is 

one,  and  only  one,  function  yi  of  the  remaining  (m  +r-l)  variables 
X  and  y  which  has  the  value  bi  at  the  point  («!,  ...,  a^,  b^,  ...,  br), 
and,  in  a  certain  closed  neighbourhood  of  that  point,  makes  /j 
identically  zero.  Moreover,  this  function  yi  has  an  nth  differential  at 
the  point  in  question. 
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Now,  replace  yx  in /a  by  the  function  so  found,  and  call  the  result  F^, 

This  is  a  function  of  the  m  variables  x  and  the  remaining  (^  -  1)  vari- 

ables I/,  which  has  the  value  zero  at  the  point  (ai,  ...,  a^,  b^,  ...,  6r),' 
since  yi  =  hi  there. 

Also  it  has  an  nth.  differential  at  the  same  point  since /i  and  y^  both 

have  wth  differentials.     Also  -~  is  not  zero  at  the  point,  since,  F^ 

having  a  differential  with  respect  to  the  x'b,  and  /s,  and  therefore  with 
respect  to  the  i/'s,  at  the  point  and  in  its  neighbourhood, 

where 

so  that 

or 

9^2 

dy.dy 
2 

dF^ 

^2 

^yi 

^«/2
' 

^yi 

'  +  /2 

2 

=  0 

0, 

Since  Ji  and  J2  are  both  different  from  zero  at  the  point,  this  gives  a 

finite  value  different  from  zero  for 

db. 

We  can  therefore  again  apply  §  31,  and  assert  that  one,  and  only 

one,  function  ̂ 2  of  the  m  variables  x  and  the  remaining  (r  —  2)  variables 
y  exists,  which  has  the  value  62  at  the  point  («i,  ...,  am,  63,  •..,  br), 
and  in  a  certain  closed  neighbourhood  of  that  point  makes  F2  identically 
zero.     Moreover  this  function  3/2  has  an  nth  differential  at  the  point. 

Now,  the  effect  of  inserting  this  function  1/2  in  F2  is  obviously  the 
same  as  that  of  inserting  this  1/2  in  the  3/1  previously  found,  and  then  in 
fo  inserting  this  last  3/1,  and  the  function  y.^  wherever  it  occurs  explicitly. 

Doing  this  both  in/i  and  in /a  they  become  functions  of  the  (m  +  r-2) 
variables  which  vanish  identically.  Making  the  same  change  in/3  and 

denoting  the  result  by  F3,  we  thus  get  the  three  equations 
dFs ^yz 

0 

3^3 

y^li'^y^^  ̂ /s ^yx 93/2  ̂yz    ̂ yi  93/3 
^yz 

.9/2?^2^^29j(l 
S3/2  ̂y-i    ̂ yi  ̂y-i 

^y-i    9«/2  ̂ yz    ̂ yx  ̂y^ 
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holding  at  the  point  in  question,  whence 

Thus  r— ^  is  finite  and  different  from  zero  at  the  point 

(O^l,    ...,  a„j,    64,    ...,  Orji 

at  which,  as  before,  F^  vanishes,  and  has  an  ?^th  differential.  Thus 

we  can  again  apply  the  theorem  and  deduce  the  existence  of  one,  and 

only  one,  function  y^  of  the  {in  +  r  -  3)  variables  having  the  value  63  at 
the  point,  and  in  a  certain  closed  neighbourhood  of  it  making  F^ 
identically  zero.  This  process  may  be  continued  and  it  is  evident  that 
we  shall  at  each  stage  obtain  unique  functions  yi,  3/2,  •••>  ̂ f  of  the 

remaining  {m  +  r  -  i)  variables  having  the  proper  values  at  the  point 
considered,  and  having  wth  differentials  there,  and  making /i, /a,  ...,/i 
vanish  identically  in  a  certain  neighbourhood  of  the  point.  Inserting 

these  values  in/^+i  and  denoting  the  result  by  i<\+i,  we  then  clearly 
get  the  equations 

^Fi^.jfi^^^fi^x^^    ^ ¥i^i  g^i 

U  =  r      +  -;r    r       +   ...  +  -^    ^   ,     (  7   —  U,    1,   . ..  ̂   —  1  ), 
a^i+i      dy^  a^i+i  ay,  cy^^^ 

holding  at  the  point,  so  that 

T  ?^i  +  /.     -  0 a^/t+i 

Thus  again  we  can  apply  the  theorem  and  proceed  a  stage  further. 

This  may  be  continued  until  we  have  exhausted  all  the  ̂ -coordinates, 
when  we  shall  have  expressed  each  of  them  in  one,  and  only  in  one,  way, 
so  as  to  have  the  values  h  at  the  point  a,  and,  in  a  certain  closed 

neighbourhood  of  that  point,  to  make  the  r  functions  /  vanish  identi- 

cally ;  moreover,  these  functions  y  of  the  a^'s  have  wth  differentials  at 
the  point.  This  being  so  we  have  only  to  form  the  total  differentials 

of  the  functions  /  with  respect  to  the  ̂ r's,  regarding  the  y\  as  being 
these  functions,  and  equate  the  result  to  zero,  to  obtain  equations  which 

determine  the  values  of  the  differentials  of  the  3/'s  at  the  point  a  ;  these 
equations  may  be  written,  symbolically,  in  the  form 

(^al  -^  ̂ylyi-^^^^^     ('*^^'  ̂ '  •••'  ''>  ̂=^'  ̂'  —  ̂'> 
Theorem.     Iffx  {x,  y),  fi{x,y),  . ..,  fr  {x,  y)  are  r  functions  of  the 

m  variables  x  and  the  r  variables  y  which  are  zero  at  the  point  {a,  b), 
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and  have  first  differentials  at  the  point  (a,  b)  and  in  a  closed  neighhou 

hood  of  that  point  first  differentials  with  respect  to  the  y's,  and  if  in  that 
closed  neighbourhood  the  Jacobian  J  of  thef's  with  respect  to  the  y's  is 
not  zero,  and  the  same  is  true  of  one  of  its  principal  minors  Jr-i ,  and  of 
one  of  the  principal  minors  Jr-%  of  Jr-i,  and  so  on,  down  to  one  of  the 
common  constituents  of  J^  Jr-n  .••,  t/2,  thsn  there  exist  unique  functions 
y\i  y-2i  '-'yyrofthem  variables  x,  which  hive  the  values  bi,  62,  .-.,  br  at 
the  point  a,  and,  throughout  a  closed  neighbourhood  of  that  point,  make 
all  the  fs  identically  zero.  Moreover,  these  functions  y  hate  first 
differentials  at  the  point  a,  whose  values  may  be  obtained  by  solving  the 

equations 

that  is. 

^.aS^^al:---^'»£^'^^.a|  — ^^^|=o> 
for  all  integers  ifrom  1  to  r  both  inclusive. 

The  proof  of  this  theorem  is  essentially  the  same  as  that  of  the 
preceding  theorem,  quoting  Cor.  1,  §30  instead  of  the  theorem  of  §  31. 

Cor.  1.  The  conditions  that  J,  Jr-u  •••>  Ji^  J\  should  not  vanish  in 
a  closed  neighbourhood  of  the  point  (a,  b),  being  replaced  by  the  conditions 
that  they  should  not  va?iish  at  the  point  and  be  continuous  there,  the 
theorem  still  holds. 

Cor.  2.  The  same  conditions  being  replaced  by  the  conditions  that 
J  should  not  vanish  at  the  point,  and  all  the  partial  differential 

coefficients  of  the  f's  with  respect  to  the  y^s  should  be  continuous  at 
the  point,  the  theorem  still  holds. 

CoR.  3.  The  conditions  that  the  ffs  should  have  first  differentials 
with  respect  to  the  ys  in  a  closed  neighbourhood  of  the  point,  and  that 
J,  Jr-\->  •••,  J\  should  iwt  vanish  throughout  that  neighbourhood,  may  be 
replaced  by  the  conditions  that  all  the  partial  differential  coefficients  of 
the  ffs  with  respect  to  tlie  ys  should  be  continuous  throughout  a  closed 
neighbourhood  of  th  point,  and  th  Jacobian  J  should  not  be  zero  at  the 
point,  the  theorem  thn  still  holds. 

A  particular  case  of  this  is  a  theorem  due  to  Dini  that,  if  J  does  not 
vanish  at  the  point  {a,  b),  and  all  the  partial  differential  coefficients  of 

the/'s  are  continuous,  there  is  a  unique  set  of  solutions  yi,  ...,  y,.,  each 
of  which  will  then  have  a  first  differential  at  the  point. 

1 
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39.  Plurality  of  solutions.     Change  of  variables.     If 

in  the  preceding  theorem  we  only  assume  that  at  the  point  (a,  6), 
but  not  necessarily  in  the  neighbourhood,  J  not  zero,  it  is  evident 
that  we  still  get  at  least  one  set  of  solutions,  the  uniqueness  of 
this  set  being  the  only  thing  affected.  An  argument  similar  to  that 
given  in  §  35  shews  that  each  such  solution  is  continuous  for  any 
ensemble  x,  such  that  there  is  only  one  ensemble  y  for  which  the  given 
functions /i, /a,  ...,/,•  all  vanish.  In  particular  this  will  be  the  case  at 

the  point  ̂   =  a,  provided  the  point  y  =  b  is  not  a  limiting  point  of 
points  y  for  which  /i  (a,  y),f2  (a,  y),  "-.fr  (a,  y)  all  vanish. 

Supposing  this  to  be  the  case,  the  reasoning  by  which  the  existence 
of  the  first  differentials  was  demonstrated  still  holds,  and  the  equations 
determining  them  are  the  same  for  all  possible  sets  of  solutions. 

We  thus  easily  get  the  following  theorem,  which  corresponds  to  the 
theorem  of  §  36. 

Theorem.  If  Qx  [x)^  ̂ 2  (^),  ...•>  gr  (^)  are  functions  of  the  r  variables 

X  which  ham  the  values  hi,  h^,  ...,  K  when  the  x's  have  the  values 
«!,  ...y  ar,  and  possess  at  the  point  x  =  a  a  finite  non-vanishing  Jacohian 
J,  then  there  exists  at  least  one  set  of  functions  x  of  the  r  variables  y 

which  have  the  values  a-y,  . . .,  ar  at  the  point  y  =  h,  and  which  in  a  certain 
closed  neighbourhood  of  that  point  render  the  equations 

yx  =/l  {x\   3/2  =fi  {X),    . . .,    yr  =fr  {x\ 

identities ;  further,  all  these  sets  of  functions  possess  at  the  point  y  =  h 

a  common  Jacobian  J'  whose  value  is  l/J. 
Moreover,  corresponding  to  the  theorem  of  §  37,  we  may  assert 

the  uniqueness  of  the  set  of  solutions,  provided  the  /'s  have  nth. 
differentials,  where  n  ̂   2,  and  it  will  follow  that  the  solutions  themselves 

possess  nth.  differentials  at  the  point  x  =  a. 

40.  The  relation  ~  =  -^/tt  -  A  particular  case  of  the  last 
theorem  is  the  following  : 

Ifx  and  y  are  both  functions  of  t  possessing  differential  coefficients 
dx 

at  the  point  t-t^^,  and  ;7t  +  0,  then  there  exists  at  least  one  function  y  of 

ato 

X,  and  all  these  functions  have  at  the  corresponding  point  Xo  a  common 
differential  coefficient,  viz. 

dy 

dy     dtp 

dx~  dx' 

dto 

Y.  4 
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If  X  is  a  monotom  functim  of  t,  or  if -j-  exists  also  in  the  neighbi 

hood  of  the  point  t  =  to  and  is  nowhere  z&i^Oy  this  solution  is  unique. 

XII.     ON   THE   REVERSIBILITY  OF  THE   ORDER  OF 
PARTIAL   DIFFERENTIATION. 

41.     Sufficient  conditions   for  the   equivalence   of  f, 
and  fy^. 

What  is  in  some  respects  the  most  important  of  such  sets  o; 
conditions  has  already  been  given  in  the  Fundamental  Theorem  o: 

Differentials,  viz.  the  equality  holds  if  :—  and  r^.  have  at  the  point  in 

dx 

question   first  differentials.     Bearing  in  mind  the  corollary  of 
this  at  once  gives  us  the  following  theorem. 

18, 

Theorem. both  continuous  functions  of  the 
9V*        ̂ v 

semhle  (x,  y)  at  the  point  (a,  b),  and ;— -  and  ̂ — ̂ r-  both  exist  at  this 

point,  then  these  latter  ha'ce  equal  values  there. 
It  will  be  noticed  that  these  conditions  make  no  assumption  as  to 

the  existence  at  other  points,  much  less  as  to  the  continuity  ̂ p),  of  the 
mixed  partial  differential  coefficients /a;^,  and  fy^. 

A  third  set  of  sufficient  conditions  is  the  following  <^^).  For  con- 
venience we  give  the  statement  in  two  parts. 

Part  I  (On  the  existence  offyx  at  the  point  (a,  b)).  Iff^  exists  in  a 

closed  neighborhood  of  a  point  (a,  b),  while  in  the  completely  open  neigh- 
bourhood, excluding  the  axial  cross  (§  5),  it  has  a  differential  coefficient  fy^. 

with  respect  to  y,  then,  if  fyx  has  only  one  dcmble  limit  as  we  ap^rroach 
the  point  (a,  b)  in  any  manner  by  means  of  points  not  on  the  axial 
cross,  fyx  exists  also  at  the  point  {a,  b)  itself 

For,  by  a  repeated  application  of  the  Theorem  of  the  Mean, 

f(a  +  h,b  +  k)  -f(a  +  h,  b)  -f(a,  b  +  k)  +fia,  b) 
hk 

=  m{a,b\  a  +  h,b  +  k)  =fyx  (x',  y\ 

where  the  point  {x',  y)  does  not  lie  on  the  axial  cross,  and  has  {a,  b)  as 
limiting  point  when  h  and  k  each  approach  zero  in  any  manner  without 
assuming  the  value  zero. 

Since  fyx  {x,  y),  and  therefore  fyx  (x,  y'),  has  only  one  double  limit 
at  the  point  {a,  b),  the  same  is  true  oi  m(a,  b;  a  +  h,  b  +  k)  when  h 
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and  k  have  zero  as  limit.     Hence,  a  repeated  limit  being  a  double  limit 

(§  5),  all  the  repeated  limits  of  m^a,  b;  a  +  h,  b  +  k)  are  equal. 
But,  by  hypothesis,  fx  is  defined  on  the  ordinate  a?  =  «,  so  that 

fx(a,  b  +  k)-/x(a,  b)      r,      ̂      y  i   ̂      /% 
Ic  h=0 

and  has,  therefore,  by  what  has  been  shewn,  only  one  limit  when  k  has 
zero  as  limit ;  that  is  to  say,  fx  has  a  differential  coefficient  fyx  with 
respect  to  ?/  at  the  point  (a,  b). 

Note.  It  should  be  noticed  that  it  does  not  follow  that/^a,  is  con- 
tinuous at  («,  b)  with  respect  to  either  variable,  still  less  with  respect 

to  the  ensemble  {x,  y).  In  fact,  fyx  need  not  exist  on  the  axial  cross, 
except  at  the  point  {a,  b)  itself.  It  may  be  proved,  however,  that  when 
it  does  exist  on  the  axial  cross,  it  is  continuous  at  {a,  b). 

Part  II.  If  in  addition  to  the  preceding  requirements  fy  exists 

along  the  line  y  =  b  at  and  in  the  neighbourhood  of  the  point  (a,  b\  then 
fxy  also  exists  at  the  point  (a,  b)  and  has  the  same  value  as  fyx. 

For,  in  this  case, 

fy(a  + h,  b)-fy(a,  b)      t.      /     i         .  i   z,     7\ 
/  -^   -^ — ^^       ̂   =  Ltm{a,b;  a  +  h,  b  +  k\ 

and  has,  therefore,  as  was  shewn  in  the  preceding  proof,  only  one  limit 
when  h  has  zero  as  limit ;  that  is  to  say,  fy  has  a  differential  coefficient 
fxy  with  respect  to  x  at  the  point  (a,  b). 

Since  the  value  of  fxy  (a,  6),  like  that  of  fyx  (a,  b),  is  thus  the  unique 
double  limit  ofm(a,b)  a  +  h,  b  +  k), 

fxy  («,  b)  =fyx  (a,  b).  Q.E.D. 
Note  1.  It  has  nowhere  been  assumed  that  the  unique  limit  postu- 

lated is  finite ;  it  may  be  +  oc  .or  -  oo . 
Note  2.  It  should  be  noticed  that,  without  making  any  properly 

two-dimensional  hypothesis,  we  can  prove  that  fyx  exists  at  the  point 
(a,  b)  if  we  postulate  that  fyx  exists  and  is  finite  along  the  ordinate 

x  =  a  in  some  open  neighbourhood  of  the  point  {a,  b)  but  not  at  the 
point  itself  and  that  it  has  an  unique  limit  as  we  approach  the  point 
(a,  b)  along  that  ordinate. 

This  is  an  immediate  consequence  of  the  Theorem  of  the  Mean 
for  a  single  variable  applied  to  fx  regarded  as  a  function  of  y  at 
points  of  the  ordinate  x^a. 

Note  3.  In  the  proof  of  the  existence  of  an  unique  double  limit 

for  m{a,  b;  a  +  h,  b  +  k),  the  assumption  (1)  that  fx  exists  in  the  open 

4—2 
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neighbourhood  of  the  point  (a,  h)  excluding  the  ordinate  x  =  a,  was 
rendered  necessary  in  order  to  apply  the  Theorem  of  the  Mean. 

This  being  postulated,  the  further  assumption  (2)  that  f^  also 

exists  on  the  ordinate  ̂   =  a,  at  and  in  the  neighbourhood  of  the  point 
(a,  h)j  is  needed  in  order  to  ascribe  a  meaning  to  the  expression 

and  so  to  prove  the  existence  of  fyx  at  the  point  (a,  h). 
Similarly,  without  postulating  (2),  the  existence  of  f^y  requires  the 

assumption  (3)  that/j,  exists  on  the  line  y  =  b,  at  and  in  the  neighbour- 
hood of  the  point  {a,  h). 

XIII.     POWER   SERIES. 

42.  Continuity  and  differentiability  of  power  series 

inside  the  region  of  convergence.  We  now  propose  to  investi- 
gate the  continuity  and  differentiability  of  a  function  of  a  single 

variable  defined  by  an  infinite  series  of  positive  integral  powers. 

This  forms  an  indispensable  preliminary  to  the  discussion  of  Taylor's Theorem. 

Let  /(^)  =  ao  +  «i''^  +  «2^^+   (1)> 

where  the  series  is  convergent  for  all  values  of  x  in  the  half-open 
interval  (0  ̂  ̂  <  r). 

I.     The  series  is  absolutely  convergent  in  this  half-oj)en  interval. 
For  let  cc  be  any  value  in  this  interval,  then  we  have  to  prove  that 

the  series 

Aq  +  A^cc-\-A^x^+   (2) 

converges,  where  the  J.'s  denote  the  absolute  values  of  the  a's. 
Let  X  be  any  quantity  greater  than  x  and  less  than  r.    Then,  since 

(1)  converges  when  x^X,  the  nth  term  has  the  limit  zero  as  n  increases 
indefinitely,  the  same  is  therefore  true  of  its  absolute  value.     Thus  we 
may  write 

AnX^<B, 

where  B  is  some  fixed  finite  quantity.     Therefore 

AnX'^< 

^{9r 

Bearing  in  mind  that  x  is  less  than  X,  this  shews  that  the  series 
(2)  has  its  terms  less  than  the  corresponding  terms  of  a  convergent 
geometrical  series,  which  proves  the  theorem. 
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11.    f{ic)  is  in  the  whole  open  interval  a  continuous  functicm  of  x. 
To  shew  this  we  shall  prove  that/  {x)  is  continuous  in  every  closed 

interval  inside  this  open  interval. 
Let  X  be  any  fixed  positive  quantity  less  than  r,  and  x  a  variable 

point  of  the  closed  interval  (0,  X).     Put 

f,{x)^A,^A,XA-A,X''^...,     (2') 

/a  {x)  =  ̂ 0  +  ̂ \^  +  A^iX"^  +  ..., 
and  so  on,/„  {x)  agreeing  with  the  series  (1)  for  the  first  n  terms  and 

with  the  series  (2')  in  all  subsequent  terms.  Then  it  is  clear  that 
these  functions  form  a  monotone  decreasing  sequence  of  continuous 
functions  and  that  their  limit  is  fix). 

Now  put 

go(,^)  =  -Ao-AiX-A2X'- ..., 

gi(x)  =  ao-AiX-A2X''-  ..., 

g^^x)  =  a(,  +  aiX -  A2X'^ -  ..., and  so  on,  where  gn(.^)  agrees  with  the  series  (1)  for  the  first  n  terms 
and  with  the  series  for  g^  (x)  in  all  subsequent  terms.     Then  it  is  clear 

that  these  functions  gn  form  a  monotone  increasing  sequence  of  con- 
tinuous functions  and  that  their  limit  isf(x). 

Thus  f{x)  being  the  limit  both  of  a  monotone  increasing  and  of  a 
monotone  decreasing  sequence  of  continuous  functions  at  a  point  x, 
it  follows  that/(^)  is  continuous  at  the  point  x  (§  7). 

III.     The  series  ai  +  2a2X+ Sasa^+  ...,        (3) 

and  the  series  ao^  + J«i^^  +  i«2^+ •••,      (4) 
have  the  same  properties  in  the  open  interval  as  the  series  (1). 

In  fact,  since  n^'"'  has,  as  n  increases,  the  limit  unity*,  and  x  is  less 
than  r,  we  can  always  find  a  value  of  n  such  that,  for  this  and  all 
greater  values, 

->n^i^\ 
X 

where  X  is  any  fixed  value  greater  than  the  fixed  value  x  and  less 
than  r.     For  this  and  all  greater  values  of  n  we  have,  therefore, 

*  For,  if  10^<?i^  10*^+1,  we  have  10*/"<n^"*$  10(*+^)/«.    Hence,  taking  log- 

arithms, kjrKlogn^'^  ̂   (/c  +  l)/n,  so  that,  by  the  first  inequality, 

which  shews  that  log  (71V")  has  the  limit  zero. 
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and,  therefore, 

a; 
hence,  as  series  (2')  is  convergent,  the  series  (3)  is  absolutely  con- 

vergent, and  has  therefore  the  property  II. 

That  the  series  (4)  has  the  properties  in  question  follows  immedi- 
ately from  the  fact  that  each  term  is  less  in  absolute  value  than  the 

corresponding  term  in  (1)  for  the  same  value  of  x. 

IV.  /(^)  has  a  differential  coefficient,  and  its  differential  coeffi- 
cient is  the  sum  of  the  series  (3)  at  every  point  of  the  open  interval. 

Further,  the  function  represented  hy  the  sum  of  the  series  (4)  hasf(x) 
for  its  differential  coefficient  at  every  point  of  the  open  interval. 

Bearing  in  mind  that 

{x  +  hy  -  x"" is  divisible  by  h,  and  has  for  quotient 

(l)  ^"~'  ■"  (2)  "^""'^  "^  •  •  •  "^  ^"~' "  ̂"'  ̂ ^' 
we  have,  by  the  known  rule  for  the  subtraction  of  convergent  series*, 

f{x  +  h)-f{x) 
~   jr~^       =  «l^l  +  «2«^2  +  ...  +  CtnUn  +   (5), 

provided  h  has  been  chosen  so  small  that  ̂   +  ̂,  as  well  as  x,  lies  in  the 
given  open  interval. 

We  can  therefore  suppose  JT  so  chosen  that 

x  +  h<JL<r. 

Thus,  since  when  s  is  greater  than  unity, 

so  that  Un<n  ix""-^  +  C ̂  ^)  ^"""'^  "^  ••'  +  ̂''~'}  ' 

we  have  Un  <n(x  +  hy~^  <  7iX"~\ 

and  therefore  AnUn<  nA^X"^'^, 
Hence  since  by  III,  the  series 

^i  +  2^2X+3^3-^'+   (6) 
is  convergent,  the  series  (5)  is  absolutely  convergent. 

*  This  rule  is  an  immediate  consequence  of  the  fact  that  the  difference  of  the 
limits  (when  they  are  unique  and  finite)  of  two  functions  is  the  unique  limit  of  the 
difference  of  the  two  functions. 
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Carrying  out  precisely  the  same  process  as  in  II,  using  for  /<, 
the  series  (6),  we  shew  that  the  series  (5)  is  the  limit  both  of  a 

monotone  increasing  and  of  a  monotone  decreasing  sequence  of  con- 
tinuous functions  of  {cc,  h)  and  is  therefore  (§  7)  a  continuous  function 

of  the  ensemble  {x,  h)  at  all  points  for  which 

and,  therefore,  for  each  fixed  value  of  x,  and  for  the  value  zero  of  h. 
Hence 

f{x^h)-f{x) 
h 

has,  for   each   fixed   value  of  x  in  the  open  interval  considered,  an 
unique  limit  as  h  approaches  zero,  and  this  limit  is  got  by  putting 

A  =  0  in  the  right-hand  side  of  (5).     By  similar  reasoning 

f{x-h)-f{x) 

-h 

has,  as  h  approaches  zero,  an  unique  limit,  whose  value  is  again  got  by 

putting  A  =  0  in  the  right-hand  side  of  (5). 
This  proves  the  first  of  our  statements.  The  second  statement 

follows  from  the  fact  that  the  series  (4)  has,  by  III,  all  the  properties 
of  the  series  (I),  and  therefore,  by  what  has  just  been  proved,  has 
the  series  (1)  for  differential  coefficient. 

43.  Continuity  on  the  boundary-  All  the  theorems  proved 

so  far  refer  to  the  half-open  interval  {0^x<r),  where  we  may  suppose 
r  to  be  the  upper  bound  of  the  values  of  x,  for  which  the  series  (1) 

converges.  When  x^r  the  series  may,  or  may  not,  converge;  if  it 
converges,  it  may,  or  may  not,  converge  absolutely.  If  it  does  not 
converge,  it  may  diverge  or  oscillate.     Thus,  for  instance, 

x-^af^  +  ̂ x^-  ...  converges,  but  not  absolutely, 
/T»2  /^  n^ 

—  -^— 3  +  3-^  -  • . .  converges  absolutely, 

x  +  \a?  +  \oi?  +  . . .  diverges  to  +  cjo , 

\—x-^x^-  ...  oscillates, 

for  the  value  x  =  r-\. 

Notice  also  that,  if  we  write  x^  for  x  in  the  second  of  these 
examples,  we  get  a  series  which  converges  absolutely  in  the  whole 

closed  interval  (-1,  +  1),  and  does  not  converge  elsewhere. 
As  regards  the  continuity  on  the  boundary,  we  have  the  following 

theorem : 
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The  limits  off  {x),  as  x  approachss  the  value  r,  lie  between  the  upper 

and  lower  limits  *  of  the  series 

a^  +  a^r  +  a^r"^  +   (7). 
In  particular,  f{x)  has,  if  the  series  (7)  converges  or  diverges  to  a  definite 

limit,  this  limit  as  unique  limit  at  x  =  r. 

Writing  >S^o,  ̂ u  ̂ 2,  •••,  ̂ m,  ••• , 

for  the  sum  of  the  first  one,  two,  three,  ...,  (m+ 1),  ...  terms  of 
the  series  (7)  we  get,  after  multiplying  the  absolutely  convergent 
series  (1)  by  the  absolutely  convergent  series 

^     X     x"^ 

r     t^ 
X  Qtj 

the  product  series  /S^  +  /S^i  -  +  ̂S'a  ̂   +  . . . , 

whence  /(^)=  (l  -  ̂ t)  (^o  +  'S^i  ̂  +  ̂2  ̂'+ ...)    (8). 
Hence  denoting  by  l^  and  u^^  the  lower  and  upper  bounds  re- 

spectively of  the  first  m  of  the  quantities  Si,  and  by  L^  and  Um  the 
lower  and  upper  bounds  respectively  of  the  remaining  quantities  Si,  we 
have  at  once 

for  all  values  of  x  in  the  open  interval.  But  the  right-hand  side  has 
the  unique  limit  L^  as  x  approaches  the  value  r.  Hence  all  the  limits 
oif(x)  are  greater  than  or  equal  to  L^. 

This  being  true  for  all  values  of  m,  it  is  true  for  the  upper  bound 
of  Ljn  for  all  values  of  m,  that  is  for  the  lower  limit  L  (§  3)  of  the 
series  (7). 

Similarly  all  the  limits  of  f{x)  are  less  than  or  equal  to  the  upper 
limit  U  of  the  same  series.     In  other  words, 

L^Utf{x)^U. 

Here  we  have  tacitly  assumed  that  L^  and  Um,  but  not  necessarily 
L  and  U,  are  finite.  Should  either  be  not  finite,  the.  corresponding 
part  of  the  inequality  is  obvious,  since  Lm  could  evidently  only  be 

—  00  and  Um  only  +  go  . 

*  That  is  the  upper  and  lower  limits  of  {aQ+air+ ...  +a„r")  as  n  is  indefinitely 
increased. 
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44.  Dififerentiability  on  the  boundary*  Assuming  that 
the  given  series 

ao  +  aiir  +  a.2^+   (1) 

converges  for  the  value  x  =  r,  we  have  to  answer  the  questions : 

(i)     When  does  the  series 

a^x  +  ̂aiX^  +   (4) 

have  the  given  seines  fw  left-hand  differential  coefficient  at  x  =  r? 
The  answer  is,  Always :  for  the  ratio  of  the  nth.  term  of  the  series  (4) 

to  that  of  the  original  series  has  zero  as  limit,  so  that  the  series  (4) 
certainly  converges  and  represents  a  continuous  function  up  to  and 

including  x-r. 
Since  the  series  (1)  is  the  differential  coefficient  of  (4)  for  x<r^  and 

has  at  ir  =  r  an  unique  limit,  viz.  its  sum  there  (§  43),  the  series  (4)  has, 
hy  a  known  property  of  a  differential  coefficient  (p.  19,  §  15,  Cor.  3), 

a  left-hand  differential  coefficient  2X  x  =  ?•,  whose  value  is  that  unique 
limit. 

If  the  original  series  diverges  definitely  to  +  go  or  to  -  00  when  ̂   =  r, 
the  same  argument  applies,  if  the  series  (4)  converges. 

(ii)     When  does  the  differential  series 

«!  +  ̂ a^x  +  ̂a^x'^  +  . . . 
represent  the  left-hand  differential  coefficient  of  the  original  series  at 
x  =  r?  The  answer  already  supplied  to  (i)  tells  us  that  this  is  the 
case  whenever  the  differential  series  converges,  or  diverges  definitely  to 
+  00  or  to  -  CO . 

XIV.     TAYLOR'S   THEOREM. 

45.  Taylor's  Theorem.  We  now  pass  to  the  necessary 
and  sufficient  condition  that  a  function  of  a  real  variable  x  should  be 

capable  of  expansion  in  some  fixed  neighbourhood  of  a  point  a  in  a 

series  of  positive  integral  powers  of  (x  —  a). 
We  require  the  following  theorem  : — If  for  each  fixed  value  of 

Gp{x,y\  n) 

yn^P
 

{n^p)V      ̂          ̂  
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wh£^re  p  is  any  fixed  positive  or  negative  integer ̂   or  zero,  has  for  all 

integers  n,  fo?-  which  n+p^O  and  for  all  values  of  x  and  y  satisfying 
0^x^x+y^H<by 

a  finite  upper  bound,  then  the  same  property  is  possessed  by  Gp-q,  where 
q  is  any  positive  or  negative  integer, 

(N.B.    This  does  not  require  Gp  to  have  a  finite  upper  bound  for  all 
values  of  x  and  y  such  that 

0^x^x  +  y<b.) 

For,  identically,  z  denoting  a  positive  quantity,  presently  to  be 
chosen, 

Gp.^(x,y;  n)  =  ̂ ^  ̂̂ /^^-t-P-i  •  ̂ ^  Gp{x,y  +  z;  n) 
^        m+p         1^/  N/^N 

where  m  is  the  first  integer  such  that 

m+p^  bjz. 

Choose  z<b- H,  then  if  in  Gp--^ (x,  y ;  n)  we  have  all  the  values 
of  X  and  y  such  that 

0^x^x  +  y^II<b, 

in  Gp{x,  y  +  z;  w)  we  have  values  of  x  and  y  +  z  such  that 

0^x^x  +  y  +  z:^ll'<b,  where  H'  =  H+  z, 
so  that,  by  the  hypothesis,  Gp(x,  y  +  z;  n),  and  therefore  the  right-hand 
side  of  (1),  has  a  finite  upper  bound.    The  same  is  therefore  true  of  the 

left-hand  side  of  (1),  that  is,  Gp-i  has  the  property  specified  in  the 
enunciation. 

Hence  Gp-^,  Gp_s,  ...,  Gp-q  all  have  the  property,  q  being  any 
positive  integer. 

Again  since,  identically, 

f_ 

(n+p  +  q)(n+p  +  q-l)  ...  (n+p+  1) 
the  property  is  certainly  possessed  by  Gp+q  for  it  is  known  to  be 
possessed  by  Gp.     This  proves  the  theorem. 

^P+Q  -/'«.*,,^^/^u.*..^_1^      r^  ̂ ^^'i\^p^  b^Gp, 

46.     We  can  now  prove  the  following  theorem,  long  known  under 

various  forms  as  Taylor's  Theorem  : 

Theorem.     If  f(a  +  h)  and  all  its  differential  coefficients  exist 

and  are  finite  throughout  the  half-open  interval 

0^h<b, 
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the  necessary  and  sufficient  condition  that  Taylor's  series 

f{a)  +  h/'(a)  +  ihV"(a)+,.. 
should  converge  and  have  /(a  +  h)  for  its  sum  for  all  values  of  h  for 

0^h<b is  that 

{n+  p)\      ̂          ̂  
regarded  as  a  function  of  the  ensemble  (x,  y ;  n),  should  for  any  con- 

veniently chosen  fixed  value  of  p  {either  zero  or  a  positive  or  a  negative 

integer)  have  a  finite  upper  bound  foi^  all  values  of  n  for  which  n+p'^Oj 
and  all  values  of  {x,  y)  satisfying  the  inequalities 

O^x^x  +  y^H, 

whatever  value  of  H  be  chosen  less  than  b. 

First  to  shew  that  this  is  sufficient.  By  the  preceding  article  it 
follows  that,  whatever  value  p  may  have,  we  may  assume  that  the 

hypothesis  is  also  satisfied  for  a  negative  integer  -  r,  where  r  ̂   2. 
That  is, 

./^fi-){a^x) {n-r)\        ̂          ̂  
(1) 

is  bounded  for  all  values  of  (x,  y)  such  that 

O^x  ̂ x  +  y  ̂ H  <b. 

Now  put  x  =  Bh,  y  =  (l-e)  h,  where  0  <  ̂  <  1. 
Then  (1)  becomes 

r{n-l){n-2)...(n-r+l)    (1 -g)"-^Ay(")(a  +  ̂^) 
h"-  '  r.(n-iy. 

where  the  second  fraction  is  Schlomilch's  remainder  En,  and 

f(a  +  h)  =f{a)  +  hf  (a)  +  ̂ hV"  («)+... 

since  the  hypothesis  that /and  all  its  differential  coefficients^exist  and 
are  finite  at  every  point  of  the  closed  interval  (a,  a  +  H)  renders  the 

remainder  form  of  Taylor's  Theorem  valid  for  every  value  of  n. 

By  the  above,  Schlomilch's  remainder  En  is  numerically  less  than 
b^'U 

n-1' 
where  U  is  the  finite  upper  bound  of  (1)  for  all  positive  values  of 

h^H.     Thus  Bn  has  the  unique  limit  zero  when  n  is  indefinitel
y 
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increased,  no  matter  what  function  9  may  be  of  n.  Hence,  by  (2), 
the  infinite  series 

converges  and  has /(a  +  h)  for  its  sum  for  all  positive  values  oi  h^II. 
Since  this  is  true  for  all  values  of  II  less  than  b,  this  proves  the 
sufficiency  of  the  condition. 

To  prove  that  the  condition  is  necessary,  we  assume  that  for  all 
values  of  h  for  which 

0<k^II<b, 

Since  this  power  series  is  absolutely  convergent,  the  same  is  true  of 

F{h)  =  \f{a)  I  +  A  I/'  (a)  I  -f-  P^  \f"  {a)\-^...=  l^^h- 1/(")  (a)  |, 

qu 

and  we  may  differentiate  term  by  term.     We  thus  get 

i?'M(A)=2  7-^-,A»--|/i»)(»)|> 
and  also 

2 

^n-ry(«)(^^) 

(n-r)\' 

^|/<^)(«+^)l 

n=r  (n.  -r)\ 

for  all  values  of  k  and  k  such  that  0^h^k  +  k:^II<b.  Rearranging 

the  right-hand  side  in  powers  of  k,  which  we  may  do  since  all  the  series 
concerned  are  absolutely  convergent. 

F('^(h  +  k)=  ̂  

F^''^{h) 

.(3). ■r{n-r)\ 

Since  each  term  in  (3)  is  positive  or  zero,  it  follows  that  each  term 
has  an  upper  bound  which  is  not  greater  than  the  upper  bound  of 

F^^"^  (Ji  +  k).  But  since  F^^"*  is  continuous  it  assumes  its  upper 
bound  as  one  of  its  values,  so  that  that  upper  bound  is  finite,  and 
therefore  so  is  the  upper  bound  of  the  term 

Ln-r 

(n-r)\  ^  ' still  more  that  of 

{n-r)v      ̂          ' 
and  this  is  true  for  all  values  of  r  ̂   0.  This  proves  the  necessity  of  the 
condition  for  every  positive  or  zero  value  of  r,  and  therefore,  by  the 
theorem  of  §  45,  for  every  value  of  r.  Since,  finally,  H  is  any  positive 
value  less  than  b,  the  necessity  of  the  condition  has  been  fully 
established. 
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,   f^^^ia^h) 

47.     We  have  now  merely  to  remark  that  the  upper  bound  of 
Z,n-p 

[n-p)r      ̂          ' 
where  h  and  h  are  connected  by  the  inequalities 

regarded  as  a  function  of  the  ensemble  (A,  ̂ ;  n)^  is  equal  to  the  upper 
bound  of 

{n-p) 

regarded  as  a  function  of  the  ensemble  {h,  n).  This  follows  from  the 

fact  that  H—k  is  the  value  of  k  for  which  the  former  expression, 
regarded  as  a  function  of  k  alone,  assumes  its  upper  bound.  Hence, 
bearing  in  mind  the  differentiability  of  power  series  (§  42),  the  result 
of  the  preceding  article  is  at  once  transformed  into  the  following : 

Theorem.     The  necessary  and  sufficient  conditions  that  the  series 

f(a)  +  h/'{a)-^ihV"{a)  +  ... 
should  converge  for  all  values  of  h  in  the  half  open  interval 

0^h<b, 

and  have  f{a  +  h)  for  its  sum,  are  that,  (l)f(a  +  h)  and  all  its  succes- 
sive differential  coefficients  exist  and  are  finite  throughout  the  kilf-open 

interval,  and  (2)  for  each  fixed  positive  value  of  H  less  than  b, 

1  {n-p)l  -^  ̂  
 ' 

regarded  as  a  function  of  the  ensemble  {h,  n)  should  be  bounded  foi^  all 
values  of  n  such  that  n  —p  ̂   0,  and  all  positive  values  of  h  less  than  or 
equal  to  H,  p  being  zero,  or  any  conveniently  chosen  positive  or  negative 
inteaer. 

CoR.     It  is  sufficient  if  besides  (1)  we  knoiv  that 

{b-hf-^ 

f(^){a+h) 

{n-p)\ 

regarded  as  a  function  of  (h,  n)  is  bounded. 

48.     The  following  additional  theorem  at  once  follows  : 

Theorem.     The  necessa?y  and  sufficient  conditions  that  the  series 

f{a)  +  hf'{a)  +  ihy"{a)+... 
should  converge  for  all  values  of  h  in  the  closed  interval  (0,  b)  and  have 
f(a  +  lb)  for  its  sum  are  that : 
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(1)  f(a  +  A)  and  its  differential  coefficients  should  exist  and  he 

finite  in  the  half -open  interval  O^h  <b; 

(2)  when  h  =  b,  /{a  +  h)  should  he  finite  and  continuous  and  the  series 
should  not  oscillate ; 

(3)  fm-  each  ffjxed positive  value  of  H <h^ 

regarded  as  a  function  of  the  ensemble  (h,  n)  should  he  hounded  for  all 

values  of  n  such  that  n-p'^0  and  all  positive  valvss  ofh^H. 
That  the  condition  (2)  is  necessary  is  evident,  that  conditions 

(1)  and  (3)  are  so  also  has  just  been  proved.  Further,  if  we  suppose 
all  three  to  hold,  the  series  is  necessarily  convergent  throughout  the 
whole  closed  interval  in  question  except  possibly  at  b  where  it  may 
diverge  without  oscillating,  and  therefore  represents  a  bounded  or 
unbounded  continuous  function  throughout  that  closed  interval.  But 

its  sum  in  the  half-open  interval  is  f{a  +  h),  by  the  preceding  article, 
and  f{x)  is  a  bounded  continuous  function  in  the  whole  closed 

interval.     Hence  the  sum,  when  h  =  b,  isf{a  +  b). 

49.  The  same  for  two  or  more  variables.  In  the  cor- 
responding theorem  for  two  or  more  variables,  differentials  take  the 

place  of  differential  coefficients,  but  we  are  no  longer  able  to  take 
both  the  steps  analogous  to  those  taken  between  §  46  and  §  47.  The 
extended  theorem  is  as  follows  : 

Theorem.  If  fia  +  h,  h  +  k)  and  all  its  differentials  exist  through- 
out the  partially  open  rectangle 

0^h<B,     0^k<S, 

in  which  case  they  are  all  necessarily  continuous  functions  of  the  ensemble 
(Ji,  k),  then  the  necessary  and  sufficient  condition  that  ths  series 

/{a,b)  +  (h 

da 

)/4(a^..^ 
da        db 

)>
 

1     /^I     9  7    ̂ \% 

f{a,  b)  +hfa  +  kf^  +  ̂ ^(faajfab,ft.b^h,  k)' +  .. 
2! 

n\W'"'db-r'   ) 
should  converge  at  every  point  of  the  partially  open  rectangle  and  have 
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.  +  ̂,  &  +  h)f(yr  its  sum  is  that  for  each  pair  of  fixed  positive  values 
:  E  and  K<S,  the  exjyression 

ere,  after  the  expansion  of  the  operator,  {H  -  h),  {K-  k)  are  to  be 
tten  for  u,  v  respectively),  regarded  as  a  function  of  the  ensemble 

■      h',  n),  should  be  bounded  for  all  positive  integral  values  of  n,  and  all 
Itive  values  ofh%H,  and  ofk^K,  such  that  kjh  =  KjH. 
Under  these  circumstances  then  the  theorem  states  that 

f{a  +  h,b  +  k)  =f(a,  b)  +  df+  |j  ^y  +  ...  +  ̂j  dV+  •.. , 

are  in  using  the  notation  df  d^f  ...  it  is  to  be  understood  that  no 
•  triction  is  put  on  the  values  of  h  and  k  other  than  that  stated 

►ve. 

The  statement  for  more  than  two  variables  is  of  course  precisely 
lilar. 

To  prove  the  theorem  we  merely  have  to  consider  that  it  is  necessary 

and  sufficient  that  Taylor's  Theorem  should  hold  on  the  portion  of  any 
straight  line  through  the  corner  (a,  b)  which  lies  in  the  rectangle. 
Taking  t  as  current  coordinate  on  such  a  line,  so  that,  by  §  21, 

^=(cos^^  +  sm^^)/, 

where  tan  6  =  kjh  =  KjH,  and  transforming  the  conditions  in  terms  of  t 
got  from  §  47,  the  required  result  follows  immediately. 
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APPENDIX   I. 

EXPLANATORY  NOTES. 

(a)  §  2,  p.  1.  It  is  remarkable  that,  general  as  this  definition  of  function  is, 

the  limits  (§§  3,  4)  on  the  right  must  exactly  coincide  with  those  on  the 
left  except  at  a  countable  set  of  points  in  the  case  of  a  function  of  one 

variable  (2)' (^),  In  the  case  of  a  function  of  more  than  one  variable,  the 
points  at  which  there  is  a  difference  in  the  limits  for  approach  by  regions,  if 

any,  form  a  set  of  the  first  category  (^). 

(P)  §  3,  p.  2.  The  associated  upper  and  lower  limiting  functions  were  first 

used  by  Baire  (^),  who,  however,  included  the  value  at  the  point  itself  among 
the  values  to  be  considered  in  each  of  the  defining  intervals  dj^,  d2,... .  The 

author  introduced  the  usage  in  the  text,  and  shewed  that  the  inequality 

which  with  Baire's  definition  was  true  everywhere,  holds  at  all  but  a  countable 
set  of  points.  Moreover  the  same  is  true  if  the  limits  are  taken  on  one  side 

only  of  each  point,  when  there  is  only  a  single  variable  (2). 

(y)  §  4,  p.  3.  It  may  happen  that  a  limiting  value  is  approached  by  means 
of  values  all  greater  (less)  than  the  limit  in  question.  We  sometimes  find  it 

convenient  to  distinguish  between  the  limits  approached  in  these  two  ways,; 

that  is,  we  may  attach  to  a  limit  a  sense  as  well  as  a  ̂ nagnitude  (^). 

(8)        §  6,  p.  6.     For  choosing  proper  sequences  ^i,  ̂ 25'--)  -^wj  •••  with  x  aaj 

limiting  point,  and  oc^ii  cCm,2^  "-,  ̂ m,n') -"  ̂ '^^^  ̂ m  as  limiting  point, 
upper  limit  (^(y)=   Lt    (fi(x,a)=    Lt     Lt  /(^^.n)? 

y  =  x  m  =  <xi  m  =  ̂   n  =  ao 

which  is  a  repeated  limit  and  therefore  (§  5)  a  double  limit  (m,  ?i)  =  (qo  ,  cc )  of 

f{Xm,n\  that  is  one  of  the  limits  of/(y),  and  therefore  ̂ <t>{x). 

y=x (c)  §  6,  p.  7..  For  if  /  is  upper  semi-continuous  and  finite,  its  upper  bound 
is  finite,  since  /  assumes  this  as  a  value.  Hence,  if  /  is  not  bounded, 

there  must  be  a  point  P  such  that  f{P)<-k,  where  k  is  any  positive 

quantity,  and    therefore    a  whole    interval    throughout  which  f{x)<-k. 
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Either  /  is  bounded  in  this  interval,  or,  similarly,  we  get  an  interval  inside 

the  first  throughout  which  fix)  <  —  2^,  and  so  on.  Thus  either  we  arrive  at 
an  interval  in  which  /  is  bounded,  or  we  get  a  sequence  of  intervals,  each 
inside  the  preceding,  and  having  therefore  at  least  one  point  Q  internal  to  all 

of  them,  such  that,  therefore,  f{Q)<-nk  for  all  integers  k.  This  is  however 
impossible,  since  f{Q)  is  finite,  which  proves  that  there  is  an  interval  in 

which  /  is  bounded.     Q.  E.  d. 

^)        §  8,  p.  8.     Functions  that  are  upper  or  lower  semi -continuous  on  the 
right  (left)  alone  have  also  been  shewn  to  be  pointwise  discontinuous  (i<^). 

The  limit  of  a  sequence  of  functions  which  are  at  every  point  continuous 

on  one  side,  not  necessarily  the  same  for  each  point,  has  been  shewn  to  be  a 

pointwise  discontinuous  function,  and  a  suitable  generalisation  has  been  given 

for  functions  of  more  than  one  variable  (^). 

('?)  §  9j  P-  IC).  The  upper  (lower)  derivates  on  the  left  and  right  only  differ 
at  a  set  of  the  first  category,  and  this  whether  or  no  the  derivates  are 

bounded  (").  If  the  derivates  are  bounded  they  differ  only  at  a  set  of 

zero  content  (^2).  Regarded  as  functions— either  upper  derivate  is  upper 
semi-continuous,  and  either  lower  derivate  lower  semi-continuous,  except  at 

a  set  of  the  first  category  (^i).  An  upper  (lower)  derivate  is  the  limit  of  a 
monotone  descending  (ascending)  sequence  of  lower  (upper)  semi-continuous 
functions.  All  the  derivates  off{x)  have  the  same  upper  and  lower  bounds 

in  any  interval (^3),  and  these  are  the  same  whether  the  interval  includes  its 
end-points,  or  not,  and  are  the  same  as  those  of  the  incrementary  ratio  ; 
moreover  these  bounds  are  unaltered  if  we  omit  any  countable  set  of  points 

from  the  interval  (^^)>  (^^).  All  the  derivates  have  the  same  upper  and  lower- 

limits  on  each  side  at  every  point  and  lie  between  them  (inclusive)  (i*) ; 
hence  if  one  derivate  is  continuous  at  a  point  so  are  they  all  and  they  are  all 

equal,  so  that  at  that  point  there  is  a  differential  coefficient.  Hence,  in 

particular,  if  any  derivate  is  known  to  be  zero  except  at  a  countable  set  of 

points,  and  is  therefore  zero  everywhere,  it  is  the  differential  coefficient,  and 
the  function  is  a  constant.  At  a  point  where  all  four  derivates  agree,  they 

all  have  the  same  derivates  (i°). 
Weierstrass  proved  by  construction  of  an  example  that  a  continuous 

function  may  throughout  an  interval  have  no  differential  coefficient  (^^)'(*^). 

In  this  case  its  derivates  have  the  following  properties  (^^) : 

(1)  There  is  necessarily  a  distinction  of  right  and  left  in  the  values  of  the 

derivates  at  a  set  of  points  dense  everywhere  and  of  the  first  category  ; 

(2)  The  upper  and  lower  bounds  of  the  derivates  at  the  points  of  this  set 

are  respectively  +  oo  and  -  oo  ; 

(3)  At  the  remaining  points  of  the  interval  both  the  upper  derivates 

are  -f  oo  and  both  the  lower  derivates  —  oo ,  exception  being  made  of  at  most 
another  set  of  the  first  category. 

Y.  5 
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(e)        §  9,  p.  11.     If  the  repeated  limit 

Lt  Lit  {f{x  +  hJrk)-f{x-{-h)-f{x->rk)-f{x))lhk 

exists,  it  follows  at  once  from  the  properties  of  derivates  that  the  single 

liniit  U^if{x+k)-f(x))/h  exists.      For  each  derivate  of  {f{x+k)-'f{x))/k 

has  then  an  unique  limit  at  ̂   =  0,  and  is  therefore  continuous  and 
equal  to  all  the  other  derivates.  Thus  if  we  choose  to  define  the  second 

differential  coefficient  without  assuming  the  existence  of  the  first  differential 
coefficient,  as  the  repeated  limit  in  the  extended  sense  mentioned  at  the  end 

of  §  5,  it  follows  of  necessity  that  the  first  differential  coefficient  exists  at  the 
point  x,  though  not  in  the  neighbourhood. 

(t)  §  11,  p.  13,  If  we  start  with  the  Theorem  of  the  Mean,  the  corresponding 

theory  of  Indeterminate  Forms  is  a  little  different.  We  then  prove  that,  if 

as  x  approaches  the  value  a,f{x)  and  F{x)  have  each  the  unique  limit  zero, 

then  the  limits  oi  f{x)IF{x)  are,  in  sense  as  well  as  magnitude,  limits  of 

f'{x)/F'{x),  provided  a  is  neither  a  limiting  point  of  common  infinities  nor 

common  zeros  of  /'  and  F'.  See  the  author's  paper  "On  Indeterminate 
Forms  "  («)  where  moreover  it  is  shewn  that  the  recently  abandoned  proof  of 

the  rule  for  oo  /c»  ,  assuming  that  for  0/0,  only  required  slight 'modification  to make  it  valid. 

(k)  §  13,  p.  16.  It  follows  at  once  from  the  Expansion  Theorem  that,  if  the 
repeated  limit  (p.  11)  which  defines  the  second  differential  coefficient  exists, 

then  the  double  limit  exists  and  is  equal  to  it  for  all  modes  of  approach  of  (A,  k) 
to  (0,  0)  which  do  not  make  k/k  nor  h/k  zero.      In  particular  both 

{f{x  +  2k)-2f{x+k)+fix)}/h^  and  {f{x+h)+f(x-h)-2fix)}/h^ 

have  a  definite  limit  if  /"  (x)  exists  and  its  value  is  2/"  {x).  The  converse  is 
of  course  in  general  not  true,  but  it  is  interesting  to  note  that,  if  we  know  that 

throughout  a  whole  interval  this  limit  is  continuous,  or  that  the  limit  is  a 

bounded  function  which  is  the  differential  coefficient  of  its  (generalised  or 
Lebesgue)  integral,  the  converse  holds  also. 

Notice  that  the  Expansion  Theorem  will  not  replace  the  definition  of  the 

nth  differential  coefficient.  For  example,  it  does  not  follow  from  the  existence 

Of  an  unique  limit  for  {f{x-\-h)-f{x)-hf\x))l^h^  tha.tf"{x)  exists. 

(X)  §  15,  p.  18.  If  we  do  not  assume  the  existence  of  the  differential 

coefficient  at  all,  but  only  that  there  is  no  distinction  of  right  and  left 

between  the  derivates  of  f{x),  it  will  follow  from  this  assumption  that  a 

differential  coefficient  does  exist  at  points  which  are  dense  everywhere  and  of 

the  second  category,  and,  further,  that  the  Theorem  of  the  Mean  holds  for 

some  point  x  of  this  set  (i^). 

(/M,)  §  15,  pp.  19,  20.  In  certain  cases  we  may  infer  that  the  function  is  a 

constant  without  knowing  a  priori  whether  the  differential  coefficient  exists. 
Thus  the  theorem  about  the  bounds  of  the  derivates  (n)  enables  us  to  assert 

I 
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that  a  function  is  a  constant  if  one  of  the  derivates  at  every  point  is  known 

to  be  zero,  except  at  a  countable  set,  or,  by  a  theorem  of  Lebesgue's(i2),  if  the 
exceptional  set  is  only  of  content  zero,  provided  the  bounds  of  the  derivates 

are  known  to  be  finite.  *       V 

(v)  §  16,  p.  21.  The  property  of  assuming  all  values  between  its  upper  and 
lower  bounds  belongs,  as  is  pointed  out  in  the  present  Tract,  to  the  following 

functions : — Continuous  functions,  §  7,  p.  7,  the  incrementary  ratio,  §  9,  p.  10, 
the  double  incrementary  ratio,  §  16,  p.  20,  the  differential  coefficient,  §  15,  p.  18, 
the  repeated  differential  coeflEicients,  §  16,  p.  20.  The  necessary  and  sufficient 
condition  that  a  function  which  is  the  limit  of  a  continuous  function  should 

assume  all  values  between  its  upper  and  lower  bounds  in  every  interval  is 
that  the  value  of  the  function  at  each  point  is  one  of  the  limits  of  values  in 

the  neighbourhood  of  the  point  on  the  right  and  also  on  the  left  (^^). 

(tt)        §  28,  p.  35.     This  theorem  has  been  stated  in  its  most  familiar  form.  A 
discussion  of  how  far  the  limitations  may  be  mitigated,  with  reference  to 

Stolz's  GrundzUge  der  Differential-  und  Integralrechnung^  will  be  found  in 
the  author's  paper  (^i). 

/p\        §  41,  p.  50.     ̂ ~-  and  ̂ — ̂   have  been  shewn  to  have  the  same  upper 

and  lower  bounds  in  every  region  throughout  which  they  both  exist,  §  16, 
p.  21.  From  this  we  have  an  intuitive  proof  that  if,  at  a  point,  one  of  the  two 
is  continuous,  so  is  the  other  and  the  values  are  the  same  there. 
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APPENDIX   III. 

ON  THE  EXPRESSIONS  AND  RESULTS  BORROWED  FROM  THE 
THEORY  OF  SETS  OF  POINTS  USED  IN  THIS  TRACT. 

("  The  Theory  of  Sets  of  Points,"  hy  W.  If.  Young  and  Grace  Chisholm 
Young,  Cambridge  University  Press,  1906,  is  cited  below  as  "  Th.  JS";  the 
Roman  numerals  refer  to  the  chapters.  The  reference  at  the  beginning  of 

each  of  the  following  notes  is  to  the  present  Tract.) 

§  3,  p.  2,  lines  7  seq.     See  Th.  S.  in.  p.  17,  §  10. 

This  process  of  taking  intervals  one  inside  the  other  requires  to  be 

grasped  for  the  proper  understanding  of  all  pure  mathematics ;  it  is 

intimately  connected  with  the  very  concept  of  an  irrational  number.  When 

we  say  "take"  a  set  of  intervals  d^,  d^,  ...dn,...,^Q  mean  :  imagine  a  law 
given,  involving  a  variable  integer  n,  such  that  inserting  for  n  any  chosen 
integer,  we  get  an  interval  determined. 

For  instance,  on  the  straight  line  we  might  have  the  law 

o?„ = (a  -  2-«  :$  ̂  ̂   a  +  2-"), 

or  in  the  plane  the  "interval"  d^  might  be  a  square  of  side  2~"  with  the 
point  a,  that  is  («!,  a^),  as  centre.     In  these  instances  each  interval  d^  lies 

inside  the  preceding  interval  o?„  _  i . 

Whatever  integer  be  chosen,  the  corresponding  interval  is  to  be  con- 
sidered, and  no  other  intervals  are  to  be  taken  into  consideration.  We  may 

then  properly  speak  of  "all"  the  intervals,  just  as  we  may  say  "all"  the 
integers,  although  we  have  no  process  by  which  we  can  present  more 

than  a  selection  of  them  simultaneously  to  the  mind.  There  are  however 

facts  which  can  be  stated  about  all  the  intervals,  independent  of  such 

simultaneous  presentation.  In  particular  if,  as  in  the  examples  quoted, 

(in  which  case  the  set  is  called  a  sequence),  the  intervals  become  smaller  than 
any  assigned  magnitude  as  n  increases,  there  will  be  one  and  only  one  point 

belonging  to  all  the  intervals,  and  this  point  will  be  an  internal  point  of  every 

interval  if,  as  in  the  examples  given,  the  end-points  of  each  interval  are 
different  from  those  of  its  predecessor.  In  fact,  not  only  is  a  a  possible  value 

of  X  when  a  — 2~"<^<a-i-2~'*,  whatever  integer  n  may  be,  but  also,  taking 

any  other  number  h,  we  can  find  an  integer  m  such  that  2"""^  is  less  than  the 
difference  of  a  and  b,  in  which  case  b  will  not  be  a  possible  value  of  x  when 

a-2-"»<.r^a  +  2-"», 
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71 so  that  the  point  h  is  not  a  point  of  d^,  and  therefore  not  of  d^  when  n  ̂   m. 

Thus  the  point  a  is  internal  to  all  the  intervals  and  is  the  only  common  point 
of  the  intervals. 

An  "intermediate  interval"  (§  3,  line  17)  means  an  interval  contained  in 
d^  and  containing  ̂ n+i)  for  some  value  of  n. 

§  3,  p.  2,  line  29.     See  Th.  S.  in.  §  10,  pp.  16-18  ;  viii.  §§  103,  104. 

A  "  set "  of  points  may  consist  of  a  finite  number  of  points  or  of  an  infinite 
number  of  points  determined  by  some  consistent  law  involving  a  variable 

element.  In  the  latter  case  the  same  remarks  apply  to  the  use  of  the  word 

"all"  as  in  the  preceding  paragraph.  The  variable  element  may  be,  but 
need  not  be,  an  integer ;  it  is  very  commonly  a  continuous  variable  x. 

Sometimes  the  law  only  involves  the  variable  element  implicitly,  as  for 

instance  in  the  case  of  the  set  of  numbers  less  than  unity  whose  expressions 

in  the  ternary  scale  involve  the  figures  0  and  2  only.  (See  Th.  S.  Ex.  2, 

pp.  20  and  48.)  Here  the  variable  element  does  not  formally  appear  but  may 

be  shewn  to  be  essentially  a  continuous  variable.  A  set  whose  variable 

element  is  essentially  an  integer  is  said  to  be  countahly  infinite ;  one  whose 

variable  element  is  essentially  a  continuous  variable  is  said  to  have  the 

potency  c.     (See  Th.  S.  iv.  §§  17,  18,  22,  23.) 

A  point  L  is  said  to  be  a  limiting  point  of  a  given  set  if  in  every 

neighbourhood  of  the  point  L  there  is  a  point  of  the  set.  Here,  as  elsewhere, 

a  neighbourhood  or  open  neighbourhood  of  a  point  L  consists  of  the  points 

other  than  L  in  an  interval  containing  L  as  internal  or  end-point  while  a 
closed  neighbourhood  includes  also  the  point  L.  Thus  the  point  a  is  the  sole 

limiting  point  of  the  set  consisting  of  the  end-points  of  the  above  intervals 

c?„,  i.e.  the  points  a ±2"'*. 
Any  point  of  the  closed  interval  (0,  1)  is  a  limiting  point  of  the  set  of 

rational  points  x^mln^  where  n  is  any  integer  and  m  any  smaller  integer 
prime  to  n.     Any  point  of  the  plane  is  a  limiting  point  of  the  set  of  rational 

points  ( —  ,   -  j ,  where  m,  n^  p  and  q  are  any  integers. 

§  4,  p.  3,  lines  14-20.     See  Th.  S.  iii.  §  10,  p.  19  ;  §§  12-14,  pp.  23-29. 

The  first  derived  set  of  a  set  G  is  the  set  of  all  the  limiting  points  of  G. 

A  closed  set  is  a  set  which  contains  all  its  limiting  points  ;  in  particular  it 

contains  those  points  which  bound  the  set  above  and  below  (cp.  p.  3,  lines  16 

and  26,  and  p.  38,  line  18). 

Cantor's  Theorem  of  Deduction.  "//"C^i,  6^2»  •••  ̂ ^  «  series  of  closed 
sets  of  points^  each  of  which  is  contained  in  the  preceding  set,  then  there  is  at 

least  one  point  common  to  all  the  sets,  and  all  such  common  points  form  a 

closed  set." 

%  4,  p.  3,  line  30.  See  Th.  S.  iii.  p.  18,  Theorem  2  and  viii.  p.  175, 
Theorem  1. 

A  sequence  of  points  means  a  set  having  one  and  only  one  limiting  point. 
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§  7,  p.  8,  line  6.  It  is  clearly  sufficient  to  prove  that  an  interval  (a,  h) 
on  a  straight  line  cannot  he  divided  into  two  closed  sets  G  and  H  ivithout 

common  points.  Suppose  the  contrary  is  the  case.  There  are  points  of  one 

of  the  sets,  say  of  6\  as  near  as  we  please  to  a,  so  that  a,  being  a  limiting 
point  of  the  set  G^  is  a  point  of  6r,  that  set  being  closed.  Hence  a  is  not 
a  point  of  the  other  set  H^  and  therefore  there  are  intervals  with  a  as 

left-hand  end-point,  containing  no  point  of  H.  Let  ̂ P  be  that  interval 
whose  length  is  the  upper  bound  of  the  lengths  of  those  intervals. 

Then  every  internal  point  of  the  interval  AP  belongs  to  the  set  6', 
therefore  the  same  is  true  of  P,  since  G  is  closed.  Therefore,  as  in  discussing 

the  point  a,  there  is  an  interval  AQ  larger  than  ̂ P containing  no  point  of  H. 
But  this  is  not  true  ;  therefore  etc.     q.  e.  d. 

§  8,  p.  8,  line  38,  and  p.  9,  line  16.  Th.  S.  p.  21.  A  set  is  said  to  be  dense 

everywhere  in  a  given  interval  when  there  is  a  point  of  the  set  in  every  interval 

inside  the  given  interval.  A  set  is  said  to  be  dense  nowhere  in  a  given 

interval,  if  it  is  not  dense  everywhere  in  any  interval  inside  the  given 

interval ;  in  this  case  there  is  in  every  interval  inside  the  given  interval 

an  interval  containing  no  point  of  the  set. 

The  rational  points  are  dense  everywhere  and  so  are  the  irrational  points ; 

the  ternary  fractions  involving  only  the  figures  0  and  2  are  dense  nowhere  in 

the  interval  (0,  1). 

A  closed  set  dense  everywhere  consists  therefore  of  all  the  points  of  an 

interval.  A  closed  set  dense  nowhere  consists  of  the  end-points  and  external 

points  of  a  set  of  non -overlapping  intervals  dense  everywhere. 
The  process  used  in  the  text  of  proving  that  there  is  a  point  which  does 

not  belong  to  any  of  the  sets  of  points  at  which  <l>{x)—f{x)^ky  for  any 
positive  value  of  Jc,  is  one  that  is  constantly  used,  and  has  led  to  the  use  of 

Baire's  term  set  of  the  first  category  ̂ ^)  for  the  set  of  those  points  which  belong 
to  at  least  one  set  (and  therefore  to  all  subsequent  sets)  of  a  sequence  of  sets 

6^1,  G2, ...  Gn, ...  each  containing  its  predecessor  and  dense  nowhere.  As  in 
the  text,  where  the  set  G^  may  be  taken  to  consist  of  all  the  points  at  which 

(fi(^a;)—f{a;)'^k2~^j  we  get  for  each  value  of  n  an  interval  d^  containing  no 
point  of  Gn  and  lying  in  d^-i.  Hence  there  is  a  point  P  internal  to  all  these 

intervals,  and  which  accordingly  belongs  to  none  of  the  sets  6^„.  This  shews 
that  a  continuum  is  not  a  set  of  the  first  category. 
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